Spaces:
Running
on
Zero
Running
on
Zero
# Copyright (C) 2024-present Naver Corporation. All rights reserved. | |
# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). | |
# | |
# -------------------------------------------------------- | |
# dpt head implementation for DUST3R | |
# Downstream heads assume inputs of size B x N x C (where N is the number of tokens) ; | |
# or if it takes as input the output at every layer, the attribute return_all_layers should be set to True | |
# the forward function also takes as input a dictionnary img_info with key "height" and "width" | |
# for PixelwiseTask, the output will be of dimension B x num_channels x H x W | |
# -------------------------------------------------------- | |
from einops import rearrange | |
from typing import List | |
import torch | |
import torch.nn as nn | |
from dust3r.heads.postprocess import postprocess | |
import dust3r.utils.path_to_croco # noqa: F401 | |
from models.dpt_block import DPTOutputAdapter # noqa | |
class DPTOutputAdapter_fix(DPTOutputAdapter): | |
""" | |
Adapt croco's DPTOutputAdapter implementation for dust3r: | |
remove duplicated weigths, and fix forward for dust3r | |
""" | |
def init(self, dim_tokens_enc=768): | |
super().init(dim_tokens_enc) | |
# these are duplicated weights | |
del self.act_1_postprocess | |
del self.act_2_postprocess | |
del self.act_3_postprocess | |
del self.act_4_postprocess | |
def forward(self, encoder_tokens: List[torch.Tensor], image_size=None): | |
assert self.dim_tokens_enc is not None, 'Need to call init(dim_tokens_enc) function first' | |
# H, W = input_info['image_size'] | |
image_size = self.image_size if image_size is None else image_size | |
H, W = image_size | |
# Number of patches in height and width | |
N_H = H // (self.stride_level * self.P_H) | |
N_W = W // (self.stride_level * self.P_W) | |
# Hook decoder onto 4 layers from specified ViT layers | |
layers = [encoder_tokens[hook] for hook in self.hooks] | |
# Extract only task-relevant tokens and ignore global tokens. | |
layers = [self.adapt_tokens(l) for l in layers] | |
# Reshape tokens to spatial representation | |
layers = [rearrange(l, 'b (nh nw) c -> b c nh nw', nh=N_H, nw=N_W) for l in layers] | |
layers = [self.act_postprocess[idx](l) for idx, l in enumerate(layers)] | |
# Project layers to chosen feature dim | |
layers = [self.scratch.layer_rn[idx](l) for idx, l in enumerate(layers)] | |
# Fuse layers using refinement stages | |
path_4 = self.scratch.refinenet4(layers[3])[:, :, :layers[2].shape[2], :layers[2].shape[3]] | |
path_3 = self.scratch.refinenet3(path_4, layers[2]) | |
path_2 = self.scratch.refinenet2(path_3, layers[1]) | |
path_1 = self.scratch.refinenet1(path_2, layers[0]) | |
# Output head | |
out = self.head(path_1) | |
return out | |
class PixelwiseTaskWithDPT(nn.Module): | |
""" DPT module for dust3r, can return 3D points + confidence for all pixels""" | |
def __init__(self, *, n_cls_token=0, hooks_idx=None, dim_tokens=None, | |
output_width_ratio=1, num_channels=1, postprocess=None, depth_mode=None, conf_mode=None, **kwargs): | |
super(PixelwiseTaskWithDPT, self).__init__() | |
self.return_all_layers = True # backbone needs to return all layers | |
self.postprocess = postprocess | |
self.depth_mode = depth_mode | |
self.conf_mode = conf_mode | |
assert n_cls_token == 0, "Not implemented" | |
dpt_args = dict(output_width_ratio=output_width_ratio, | |
num_channels=num_channels, | |
**kwargs) | |
if hooks_idx is not None: | |
dpt_args.update(hooks=hooks_idx) | |
self.dpt = DPTOutputAdapter_fix(**dpt_args) | |
dpt_init_args = {} if dim_tokens is None else {'dim_tokens_enc': dim_tokens} | |
self.dpt.init(**dpt_init_args) | |
def forward(self, x, img_info): | |
out = self.dpt(x, image_size=(img_info[0], img_info[1])) | |
if self.postprocess: | |
out = self.postprocess(out, self.depth_mode, self.conf_mode) | |
return out | |
def create_dpt_head(net, has_conf=False): | |
""" | |
return PixelwiseTaskWithDPT for given net params | |
""" | |
assert net.dec_depth > 9 | |
l2 = net.dec_depth | |
feature_dim = 256 | |
last_dim = feature_dim//2 | |
out_nchan = 3 | |
ed = net.enc_embed_dim | |
dd = net.dec_embed_dim | |
return PixelwiseTaskWithDPT(num_channels=out_nchan + has_conf, | |
feature_dim=feature_dim, | |
last_dim=last_dim, | |
hooks_idx=[0, l2*2//4, l2*3//4, l2], | |
dim_tokens=[ed, dd, dd, dd], | |
postprocess=postprocess, | |
depth_mode=net.depth_mode, | |
conf_mode=net.conf_mode, | |
head_type='regression') | |