# Copyright (C) 2024-present Naver Corporation. All rights reserved. # Licensed under CC BY-NC-SA 4.0 (non-commercial use only). # # -------------------------------------------------------- # Random sampling under a constraint # -------------------------------------------------------- import numpy as np import torch class BatchedRandomSampler: """ Random sampling under a constraint: each sample in the batch has the same feature, which is chosen randomly from a known pool of 'features' for each batch. For instance, the 'feature' could be the image aspect-ratio. The index returned is a tuple (sample_idx, feat_idx). This sampler ensures that each series of `batch_size` indices has the same `feat_idx`. """ def __init__(self, dataset, batch_size, pool_size, world_size=1, rank=0, drop_last=True): self.batch_size = batch_size self.pool_size = pool_size self.len_dataset = N = len(dataset) self.total_size = round_by(N, batch_size*world_size) if drop_last else N assert world_size == 1 or drop_last, 'must drop the last batch in distributed mode' # distributed sampler self.world_size = world_size self.rank = rank self.epoch = None def __len__(self): return self.total_size // self.world_size def set_epoch(self, epoch): self.epoch = epoch def __iter__(self): # prepare RNG if self.epoch is None: assert self.world_size == 1 and self.rank == 0, 'use set_epoch() if distributed mode is used' seed = int(torch.empty((), dtype=torch.int64).random_().item()) else: seed = self.epoch + 777 rng = np.random.default_rng(seed=seed) # random indices (will restart from 0 if not drop_last) sample_idxs = np.arange(self.total_size) rng.shuffle(sample_idxs) # random feat_idxs (same across each batch) n_batches = (self.total_size+self.batch_size-1) // self.batch_size feat_idxs = rng.integers(self.pool_size, size=n_batches) feat_idxs = np.broadcast_to(feat_idxs[:, None], (n_batches, self.batch_size)) feat_idxs = feat_idxs.ravel()[:self.total_size] # put them together idxs = np.c_[sample_idxs, feat_idxs] # shape = (total_size, 2) # Distributed sampler: we select a subset of batches # make sure the slice for each node is aligned with batch_size size_per_proc = self.batch_size * ((self.total_size + self.world_size * self.batch_size-1) // (self.world_size * self.batch_size)) idxs = idxs[self.rank*size_per_proc: (self.rank+1)*size_per_proc] yield from (tuple(idx) for idx in idxs) def round_by(total, multiple, up=False): if up: total = total + multiple-1 return (total//multiple) * multiple