# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_2d_blocks_flax import ( FlaxCrossAttnDownBlock2D, FlaxDownBlock2D, FlaxUNetMidBlock2DCrossAttn, ) @flax.struct.dataclass class FlaxControlNetOutput(BaseOutput): """ The output of [`FlaxControlNetModel`]. Args: down_block_res_samples (`jnp.ndarray`): mid_block_res_sample (`jnp.ndarray`): """ down_block_res_samples: jnp.ndarray mid_block_res_sample: jnp.ndarray class FlaxControlNetConditioningEmbedding(nn.Module): conditioning_embedding_channels: int block_out_channels: Tuple[int] = (16, 32, 96, 256) dtype: jnp.dtype = jnp.float32 def setup(self): self.conv_in = nn.Conv( self.block_out_channels[0], kernel_size=(3, 3), padding=((1, 1), (1, 1)), dtype=self.dtype, ) blocks = [] for i in range(len(self.block_out_channels) - 1): channel_in = self.block_out_channels[i] channel_out = self.block_out_channels[i + 1] conv1 = nn.Conv( channel_in, kernel_size=(3, 3), padding=((1, 1), (1, 1)), dtype=self.dtype, ) blocks.append(conv1) conv2 = nn.Conv( channel_out, kernel_size=(3, 3), strides=(2, 2), padding=((1, 1), (1, 1)), dtype=self.dtype, ) blocks.append(conv2) self.blocks = blocks self.conv_out = nn.Conv( self.conditioning_embedding_channels, kernel_size=(3, 3), padding=((1, 1), (1, 1)), kernel_init=nn.initializers.zeros_init(), bias_init=nn.initializers.zeros_init(), dtype=self.dtype, ) def __call__(self, conditioning): embedding = self.conv_in(conditioning) embedding = nn.silu(embedding) for block in self.blocks: embedding = block(embedding) embedding = nn.silu(embedding) embedding = self.conv_out(embedding) return embedding @flax_register_to_config class FlaxControlNetModel(nn.Module, FlaxModelMixin, ConfigMixin): r""" A ControlNet model. This model inherits from [`FlaxModelMixin`]. Check the superclass documentation for it’s generic methods implemented for all models (such as downloading or saving). This model is also a Flax Linen [`flax.linen.Module`](https://flax.readthedocs.io/en/latest/flax.linen.html#module) subclass. Use it as a regular Flax Linen module and refer to the Flax documentation for all matters related to its general usage and behavior. Inherent JAX features such as the following are supported: - [Just-In-Time (JIT) compilation](https://jax.readthedocs.io/en/latest/jax.html#just-in-time-compilation-jit) - [Automatic Differentiation](https://jax.readthedocs.io/en/latest/jax.html#automatic-differentiation) - [Vectorization](https://jax.readthedocs.io/en/latest/jax.html#vectorization-vmap) - [Parallelization](https://jax.readthedocs.io/en/latest/jax.html#parallelization-pmap) Parameters: sample_size (`int`, *optional*): The size of the input sample. in_channels (`int`, *optional*, defaults to 4): The number of channels in the input sample. down_block_types (`Tuple[str]`, *optional*, defaults to `("FlaxCrossAttnDownBlock2D", "FlaxCrossAttnDownBlock2D", "FlaxCrossAttnDownBlock2D", "FlaxDownBlock2D")`): The tuple of downsample blocks to use. block_out_channels (`Tuple[int]`, *optional*, defaults to `(320, 640, 1280, 1280)`): The tuple of output channels for each block. layers_per_block (`int`, *optional*, defaults to 2): The number of layers per block. attention_head_dim (`int` or `Tuple[int]`, *optional*, defaults to 8): The dimension of the attention heads. num_attention_heads (`int` or `Tuple[int]`, *optional*): The number of attention heads. cross_attention_dim (`int`, *optional*, defaults to 768): The dimension of the cross attention features. dropout (`float`, *optional*, defaults to 0): Dropout probability for down, up and bottleneck blocks. flip_sin_to_cos (`bool`, *optional*, defaults to `True`): Whether to flip the sin to cos in the time embedding. freq_shift (`int`, *optional*, defaults to 0): The frequency shift to apply to the time embedding. controlnet_conditioning_channel_order (`str`, *optional*, defaults to `rgb`): The channel order of conditional image. Will convert to `rgb` if it's `bgr`. conditioning_embedding_out_channels (`tuple`, *optional*, defaults to `(16, 32, 96, 256)`): The tuple of output channel for each block in the `conditioning_embedding` layer. """ sample_size: int = 32 in_channels: int = 4 down_block_types: Tuple[str] = ( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) only_cross_attention: Union[bool, Tuple[bool]] = False block_out_channels: Tuple[int] = (320, 640, 1280, 1280) layers_per_block: int = 2 attention_head_dim: Union[int, Tuple[int]] = 8 num_attention_heads: Optional[Union[int, Tuple[int]]] = None cross_attention_dim: int = 1280 dropout: float = 0.0 use_linear_projection: bool = False dtype: jnp.dtype = jnp.float32 flip_sin_to_cos: bool = True freq_shift: int = 0 controlnet_conditioning_channel_order: str = "rgb" conditioning_embedding_out_channels: Tuple[int] = (16, 32, 96, 256) def init_weights(self, rng: jax.random.KeyArray) -> FrozenDict: # init input tensors sample_shape = (1, self.in_channels, self.sample_size, self.sample_size) sample = jnp.zeros(sample_shape, dtype=jnp.float32) timesteps = jnp.ones((1,), dtype=jnp.int32) encoder_hidden_states = jnp.zeros((1, 1, self.cross_attention_dim), dtype=jnp.float32) controlnet_cond_shape = (1, 3, self.sample_size * 8, self.sample_size * 8) controlnet_cond = jnp.zeros(controlnet_cond_shape, dtype=jnp.float32) params_rng, dropout_rng = jax.random.split(rng) rngs = {"params": params_rng, "dropout": dropout_rng} return self.init(rngs, sample, timesteps, encoder_hidden_states, controlnet_cond)["params"] def setup(self): block_out_channels = self.block_out_channels time_embed_dim = block_out_channels[0] * 4 # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. num_attention_heads = self.num_attention_heads or self.attention_head_dim # input self.conv_in = nn.Conv( block_out_channels[0], kernel_size=(3, 3), strides=(1, 1), padding=((1, 1), (1, 1)), dtype=self.dtype, ) # time self.time_proj = FlaxTimesteps( block_out_channels[0], flip_sin_to_cos=self.flip_sin_to_cos, freq_shift=self.config.freq_shift ) self.time_embedding = FlaxTimestepEmbedding(time_embed_dim, dtype=self.dtype) self.controlnet_cond_embedding = FlaxControlNetConditioningEmbedding( conditioning_embedding_channels=block_out_channels[0], block_out_channels=self.conditioning_embedding_out_channels, ) only_cross_attention = self.only_cross_attention if isinstance(only_cross_attention, bool): only_cross_attention = (only_cross_attention,) * len(self.down_block_types) if isinstance(num_attention_heads, int): num_attention_heads = (num_attention_heads,) * len(self.down_block_types) # down down_blocks = [] controlnet_down_blocks = [] output_channel = block_out_channels[0] controlnet_block = nn.Conv( output_channel, kernel_size=(1, 1), padding="VALID", kernel_init=nn.initializers.zeros_init(), bias_init=nn.initializers.zeros_init(), dtype=self.dtype, ) controlnet_down_blocks.append(controlnet_block) for i, down_block_type in enumerate(self.down_block_types): input_channel = output_channel output_channel = block_out_channels[i] is_final_block = i == len(block_out_channels) - 1 if down_block_type == "CrossAttnDownBlock2D": down_block = FlaxCrossAttnDownBlock2D( in_channels=input_channel, out_channels=output_channel, dropout=self.dropout, num_layers=self.layers_per_block, num_attention_heads=num_attention_heads[i], add_downsample=not is_final_block, use_linear_projection=self.use_linear_projection, only_cross_attention=only_cross_attention[i], dtype=self.dtype, ) else: down_block = FlaxDownBlock2D( in_channels=input_channel, out_channels=output_channel, dropout=self.dropout, num_layers=self.layers_per_block, add_downsample=not is_final_block, dtype=self.dtype, ) down_blocks.append(down_block) for _ in range(self.layers_per_block): controlnet_block = nn.Conv( output_channel, kernel_size=(1, 1), padding="VALID", kernel_init=nn.initializers.zeros_init(), bias_init=nn.initializers.zeros_init(), dtype=self.dtype, ) controlnet_down_blocks.append(controlnet_block) if not is_final_block: controlnet_block = nn.Conv( output_channel, kernel_size=(1, 1), padding="VALID", kernel_init=nn.initializers.zeros_init(), bias_init=nn.initializers.zeros_init(), dtype=self.dtype, ) controlnet_down_blocks.append(controlnet_block) self.down_blocks = down_blocks self.controlnet_down_blocks = controlnet_down_blocks # mid mid_block_channel = block_out_channels[-1] self.mid_block = FlaxUNetMidBlock2DCrossAttn( in_channels=mid_block_channel, dropout=self.dropout, num_attention_heads=num_attention_heads[-1], use_linear_projection=self.use_linear_projection, dtype=self.dtype, ) self.controlnet_mid_block = nn.Conv( mid_block_channel, kernel_size=(1, 1), padding="VALID", kernel_init=nn.initializers.zeros_init(), bias_init=nn.initializers.zeros_init(), dtype=self.dtype, ) def __call__( self, sample, timesteps, encoder_hidden_states, controlnet_cond, conditioning_scale: float = 1.0, return_dict: bool = True, train: bool = False, ) -> Union[FlaxControlNetOutput, Tuple]: r""" Args: sample (`jnp.ndarray`): (batch, channel, height, width) noisy inputs tensor timestep (`jnp.ndarray` or `float` or `int`): timesteps encoder_hidden_states (`jnp.ndarray`): (batch_size, sequence_length, hidden_size) encoder hidden states controlnet_cond (`jnp.ndarray`): (batch, channel, height, width) the conditional input tensor conditioning_scale: (`float`) the scale factor for controlnet outputs return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`models.unet_2d_condition_flax.FlaxUNet2DConditionOutput`] instead of a plain tuple. train (`bool`, *optional*, defaults to `False`): Use deterministic functions and disable dropout when not training. Returns: [`~models.unet_2d_condition_flax.FlaxUNet2DConditionOutput`] or `tuple`: [`~models.unet_2d_condition_flax.FlaxUNet2DConditionOutput`] if `return_dict` is True, otherwise a `tuple`. When returning a tuple, the first element is the sample tensor. """ channel_order = self.controlnet_conditioning_channel_order if channel_order == "bgr": controlnet_cond = jnp.flip(controlnet_cond, axis=1) # 1. time if not isinstance(timesteps, jnp.ndarray): timesteps = jnp.array([timesteps], dtype=jnp.int32) elif isinstance(timesteps, jnp.ndarray) and len(timesteps.shape) == 0: timesteps = timesteps.astype(dtype=jnp.float32) timesteps = jnp.expand_dims(timesteps, 0) t_emb = self.time_proj(timesteps) t_emb = self.time_embedding(t_emb) # 2. pre-process sample = jnp.transpose(sample, (0, 2, 3, 1)) sample = self.conv_in(sample) controlnet_cond = jnp.transpose(controlnet_cond, (0, 2, 3, 1)) controlnet_cond = self.controlnet_cond_embedding(controlnet_cond) sample += controlnet_cond # 3. down down_block_res_samples = (sample,) for down_block in self.down_blocks: if isinstance(down_block, FlaxCrossAttnDownBlock2D): sample, res_samples = down_block(sample, t_emb, encoder_hidden_states, deterministic=not train) else: sample, res_samples = down_block(sample, t_emb, deterministic=not train) down_block_res_samples += res_samples # 4. mid sample = self.mid_block(sample, t_emb, encoder_hidden_states, deterministic=not train) # 5. contronet blocks controlnet_down_block_res_samples = () for down_block_res_sample, controlnet_block in zip(down_block_res_samples, self.controlnet_down_blocks): down_block_res_sample = controlnet_block(down_block_res_sample) controlnet_down_block_res_samples += (down_block_res_sample,) down_block_res_samples = controlnet_down_block_res_samples mid_block_res_sample = self.controlnet_mid_block(sample) # 6. scaling down_block_res_samples = [sample * conditioning_scale for sample in down_block_res_samples] mid_block_res_sample *= conditioning_scale if not return_dict: return (down_block_res_samples, mid_block_res_sample) return FlaxControlNetOutput( down_block_res_samples=down_block_res_samples, mid_block_res_sample=mid_block_res_sample )