# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math import flax.linen as nn import jax.numpy as jnp def get_sinusoidal_embeddings( timesteps: jnp.ndarray, embedding_dim: int, freq_shift: float = 1, min_timescale: float = 1, max_timescale: float = 1.0e4, flip_sin_to_cos: bool = False, scale: float = 1.0, ) -> jnp.ndarray: """Returns the positional encoding (same as Tensor2Tensor). Args: timesteps: a 1-D Tensor of N indices, one per batch element. These may be fractional. embedding_dim: The number of output channels. min_timescale: The smallest time unit (should probably be 0.0). max_timescale: The largest time unit. Returns: a Tensor of timing signals [N, num_channels] """ assert timesteps.ndim == 1, "Timesteps should be a 1d-array" assert embedding_dim % 2 == 0, f"Embedding dimension {embedding_dim} should be even" num_timescales = float(embedding_dim // 2) log_timescale_increment = math.log(max_timescale / min_timescale) / (num_timescales - freq_shift) inv_timescales = min_timescale * jnp.exp(jnp.arange(num_timescales, dtype=jnp.float32) * -log_timescale_increment) emb = jnp.expand_dims(timesteps, 1) * jnp.expand_dims(inv_timescales, 0) # scale embeddings scaled_time = scale * emb if flip_sin_to_cos: signal = jnp.concatenate([jnp.cos(scaled_time), jnp.sin(scaled_time)], axis=1) else: signal = jnp.concatenate([jnp.sin(scaled_time), jnp.cos(scaled_time)], axis=1) signal = jnp.reshape(signal, [jnp.shape(timesteps)[0], embedding_dim]) return signal class FlaxTimestepEmbedding(nn.Module): r""" Time step Embedding Module. Learns embeddings for input time steps. Args: time_embed_dim (`int`, *optional*, defaults to `32`): Time step embedding dimension dtype (:obj:`jnp.dtype`, *optional*, defaults to jnp.float32): Parameters `dtype` """ time_embed_dim: int = 32 dtype: jnp.dtype = jnp.float32 @nn.compact def __call__(self, temb): temb = nn.Dense(self.time_embed_dim, dtype=self.dtype, name="linear_1")(temb) temb = nn.silu(temb) temb = nn.Dense(self.time_embed_dim, dtype=self.dtype, name="linear_2")(temb) return temb class FlaxTimesteps(nn.Module): r""" Wrapper Module for sinusoidal Time step Embeddings as described in https://arxiv.org/abs/2006.11239 Args: dim (`int`, *optional*, defaults to `32`): Time step embedding dimension """ dim: int = 32 flip_sin_to_cos: bool = False freq_shift: float = 1 @nn.compact def __call__(self, timesteps): return get_sinusoidal_embeddings( timesteps, embedding_dim=self.dim, flip_sin_to_cos=self.flip_sin_to_cos, freq_shift=self.freq_shift )