l1006986533 commited on
Commit
2d4b3fd
·
1 Parent(s): f3c59e1

change model location and rewrite readme

Browse files
Files changed (3) hide show
  1. .gitignore +1 -0
  2. README.md +10 -89
  3. app.py +1 -1
.gitignore CHANGED
@@ -1 +1,2 @@
1
  .DS_Store
 
 
1
  .DS_Store
2
+ G_98000.pth
README.md CHANGED
@@ -1,89 +1,10 @@
1
-
2
- # This code is slightly modified on the [VITS repo](https://github.com/jaywalnut310/vits)
3
- ## chinese train
4
- `python3 train.py -c configs/woman_csmsc.json -m woman_csmsc`
5
-
6
- ## inference
7
- you can run infer.py
8
-
9
- ## switch english or chinese
10
- just modify
11
- `chinese_mode = True`
12
- in ./text/__init__.py
13
-
14
- ## data example
15
- copy **24000hz** data-baker datasets to ./test/csmsc
16
-
17
- **For copyright reasons, you can only download it yourself**
18
-
19
- ## models
20
- you can get example model in ./logs/woman_csmsc/G*.pth
21
-
22
- ## Prosody model
23
- you can try chinese Prosody model in this repo.
24
-
25
-
26
-
27
- ======================================================================================================
28
-
29
- # VITS: Conditional Variational Autoencoder with Adversarial Learning for End-to-End Text-to-Speech
30
-
31
- ### Jaehyeon Kim, Jungil Kong, and Juhee Son
32
-
33
- In our recent [paper](https://arxiv.org/abs/2106.06103), we propose VITS: Conditional Variational Autoencoder with Adversarial Learning for End-to-End Text-to-Speech.
34
-
35
- Several recent end-to-end text-to-speech (TTS) models enabling single-stage training and parallel sampling have been proposed, but their sample quality does not match that of two-stage TTS systems. In this work, we present a parallel end-to-end TTS method that generates more natural sounding audio than current two-stage models. Our method adopts variational inference augmented with normalizing flows and an adversarial training process, which improves the expressive power of generative modeling. We also propose a stochastic duration predictor to synthesize speech with diverse rhythms from input text. With the uncertainty modeling over latent variables and the stochastic duration predictor, our method expresses the natural one-to-many relationship in which a text input can be spoken in multiple ways with different pitches and rhythms. A subjective human evaluation (mean opinion score, or MOS) on the LJ Speech, a single speaker dataset, shows that our method outperforms the best publicly available TTS systems and achieves a MOS comparable to ground truth.
36
-
37
- Visit our [demo](https://jaywalnut310.github.io/vits-demo/index.html) for audio samples.
38
-
39
- We also provide the [pretrained models](https://drive.google.com/drive/folders/1ksarh-cJf3F5eKJjLVWY0X1j1qsQqiS2?usp=sharing).
40
-
41
- ** Update note: Thanks to [Rishikesh (ऋषिकेश)](https://github.com/jaywalnut310/vits/issues/1), our interactive TTS demo is now available on [Colab Notebook](https://colab.research.google.com/drive/1CO61pZizDj7en71NQG_aqqKdGaA_SaBf?usp=sharing).
42
-
43
- <table style="width:100%">
44
- <tr>
45
- <th>VITS at training</th>
46
- <th>VITS at inference</th>
47
- </tr>
48
- <tr>
49
- <td><img src="resources/fig_1a.png" alt="VITS at training" height="400"></td>
50
- <td><img src="resources/fig_1b.png" alt="VITS at inference" height="400"></td>
51
- </tr>
52
- </table>
53
-
54
-
55
- ## Pre-requisites
56
- 0. Python >= 3.6
57
- 0. Clone this repository
58
- 0. Install python requirements. Please refer [requirements.txt](requirements.txt)
59
- 1. You may need to install espeak first: `apt-get install espeak`
60
- 0. Download datasets
61
- 1. Download and extract the LJ Speech dataset, then rename or create a link to the dataset folder: `ln -s /path/to/LJSpeech-1.1/wavs DUMMY1`
62
- 1. For mult-speaker setting, download and extract the VCTK dataset, and downsample wav files to 22050 Hz. Then rename or create a link to the dataset folder: `ln -s /path/to/VCTK-Corpus/downsampled_wavs DUMMY2`
63
- 0. Build Monotonic Alignment Search and run preprocessing if you use your own datasets.
64
- ```sh
65
- # Cython-version Monotonoic Alignment Search
66
- cd monotonic_align
67
- python setup.py build_ext --inplace
68
-
69
- # Preprocessing (g2p) for your own datasets. Preprocessed phonemes for LJ Speech and VCTK have been already provided.
70
- # python preprocess.py --text_index 1 --filelists filelists/ljs_audio_text_train_filelist.txt filelists/ljs_audio_text_val_filelist.txt filelists/ljs_audio_text_test_filelist.txt
71
- # python preprocess.py --text_index 2 --filelists filelists/vctk_audio_sid_text_train_filelist.txt filelists/vctk_audio_sid_text_val_filelist.txt filelists/vctk_audio_sid_text_test_filelist.txt
72
- ```
73
-
74
-
75
- ## Training Exmaple
76
- ```sh
77
- # LJ Speech
78
- python train.py -c configs/ljs_base.json -m ljs_base
79
-
80
- # VCTK
81
- python train_ms.py -c configs/vctk_base.json -m vctk_base
82
-
83
-
84
-
85
- ```
86
-
87
-
88
- ## Inference Example
89
- See [inference.ipynb](inference.ipynb)
 
1
+ ---
2
+ title: Vits Chinese
3
+ emoji: 🏃
4
+ colorFrom: red
5
+ colorTo: yellow
6
+ sdk: gradio
7
+ sdk_version: 3.9
8
+ app_file: app.py
9
+ pinned: false
10
+ ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
app.py CHANGED
@@ -28,7 +28,7 @@ net_g = SynthesizerTrn(
28
  _ = net_g.eval()
29
 
30
  # _ = utils.load_checkpoint("logs/woman_csmsc/G_100000.pth", net_g, None)
31
- _ = utils.load_checkpoint("logs/G_98000.pth", net_g, None)
32
 
33
  def vc_fn(input):
34
  stn_tst = get_text(input, hps)
 
28
  _ = net_g.eval()
29
 
30
  # _ = utils.load_checkpoint("logs/woman_csmsc/G_100000.pth", net_g, None)
31
+ _ = utils.load_checkpoint("G_98000.pth", net_g, None)
32
 
33
  def vc_fn(input):
34
  stn_tst = get_text(input, hps)