Spaces:
Runtime error
Runtime error
justinpinkney
commited on
Commit
•
70e803f
1
Parent(s):
4184646
init
Browse files- app.py +234 -0
- requirements.txt +14 -0
app.py
ADDED
@@ -0,0 +1,234 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from clip2latent import models
|
4 |
+
from PIL import Image
|
5 |
+
|
6 |
+
device = "cuda"
|
7 |
+
model_choices = {
|
8 |
+
"faces": {
|
9 |
+
"checkpoint": "https://huggingface.co/lambdalabs/clip2latent/resolve/main/ffhq-sg2-510.ckpt",
|
10 |
+
"config": "https://huggingface.co/lambdalabs/clip2latent/resolve/main/ffhq-sg2-510.yaml",
|
11 |
+
},
|
12 |
+
"landscape": {
|
13 |
+
"checkpoint": "https://huggingface.co/lambdalabs/clip2latent/resolve/main/lhq-sg3-410.ckpt",
|
14 |
+
"config": "https://huggingface.co/lambdalabs/clip2latent/resolve/main/lhq-sg3-410.yaml",
|
15 |
+
}
|
16 |
+
}
|
17 |
+
|
18 |
+
model_cache = {}
|
19 |
+
for k, v in model_choices.items():
|
20 |
+
checkpoint = v["checkpoint"]
|
21 |
+
cfg_file = v["config"]
|
22 |
+
# Moving to the cpu seems to break the model, so just put all on the gpu
|
23 |
+
model_cache[k] = models.Clip2StyleGAN(cfg_file, device, checkpoint)
|
24 |
+
|
25 |
+
@torch.no_grad()
|
26 |
+
def infer(prompt, model_select, n_samples, scale):
|
27 |
+
model = model_cache[model_select]
|
28 |
+
images, _ = model(prompt, n_samples_per_txt=n_samples, cond_scale=scale, skips=250, clip_sort=True)
|
29 |
+
images = images.cpu()
|
30 |
+
make_im = lambda x: (255*x.clamp(-1, 1)/2 + 127.5).to(torch.uint8).permute(1,2,0).numpy()
|
31 |
+
images = [Image.fromarray(make_im(x)) for x in images]
|
32 |
+
return images
|
33 |
+
|
34 |
+
|
35 |
+
css = """
|
36 |
+
a {
|
37 |
+
color: inherit;
|
38 |
+
text-decoration: underline;
|
39 |
+
}
|
40 |
+
.gradio-container {
|
41 |
+
font-family: 'IBM Plex Sans', sans-serif;
|
42 |
+
}
|
43 |
+
.gr-button {
|
44 |
+
color: white;
|
45 |
+
border-color: #9d66e5;
|
46 |
+
background: #9d66e5;
|
47 |
+
}
|
48 |
+
input[type='range'] {
|
49 |
+
accent-color: #9d66e5;
|
50 |
+
}
|
51 |
+
.dark input[type='range'] {
|
52 |
+
accent-color: #dfdfdf;
|
53 |
+
}
|
54 |
+
.container {
|
55 |
+
max-width: 730px;
|
56 |
+
margin: auto;
|
57 |
+
padding-top: 1.5rem;
|
58 |
+
}
|
59 |
+
#gallery {
|
60 |
+
min-height: 22rem;
|
61 |
+
margin-bottom: 15px;
|
62 |
+
margin-left: auto;
|
63 |
+
margin-right: auto;
|
64 |
+
border-bottom-right-radius: .5rem !important;
|
65 |
+
border-bottom-left-radius: .5rem !important;
|
66 |
+
}
|
67 |
+
#gallery>div>.h-full {
|
68 |
+
min-height: 20rem;
|
69 |
+
}
|
70 |
+
.details:hover {
|
71 |
+
text-decoration: underline;
|
72 |
+
}
|
73 |
+
.gr-button {
|
74 |
+
white-space: nowrap;
|
75 |
+
}
|
76 |
+
.gr-button:focus {
|
77 |
+
border-color: rgb(147 197 253 / var(--tw-border-opacity));
|
78 |
+
outline: none;
|
79 |
+
box-shadow: var(--tw-ring-offset-shadow), var(--tw-ring-shadow), var(--tw-shadow, 0 0 #0000);
|
80 |
+
--tw-border-opacity: 1;
|
81 |
+
--tw-ring-offset-shadow: var(--tw-ring-inset) 0 0 0 var(--tw-ring-offset-width) var(--tw-ring-offset-color);
|
82 |
+
--tw-ring-shadow: var(--tw-ring-inset) 0 0 0 calc(3px var(--tw-ring-offset-width)) var(--tw-ring-color);
|
83 |
+
--tw-ring-color: rgb(191 219 254 / var(--tw-ring-opacity));
|
84 |
+
--tw-ring-opacity: .5;
|
85 |
+
}
|
86 |
+
#advanced-options {
|
87 |
+
margin-bottom: 20px;
|
88 |
+
}
|
89 |
+
.footer {
|
90 |
+
margin-bottom: 45px;
|
91 |
+
margin-top: 35px;
|
92 |
+
text-align: center;
|
93 |
+
border-bottom: 1px solid #e5e5e5;
|
94 |
+
}
|
95 |
+
.footer>p {
|
96 |
+
font-size: .8rem;
|
97 |
+
display: inline-block;
|
98 |
+
padding: 0 10px;
|
99 |
+
transform: translateY(10px);
|
100 |
+
background: white;
|
101 |
+
}
|
102 |
+
.dark .logo{ filter: invert(1); }
|
103 |
+
.dark .footer {
|
104 |
+
border-color: #303030;
|
105 |
+
}
|
106 |
+
.dark .footer>p {
|
107 |
+
background: #0b0f19;
|
108 |
+
}
|
109 |
+
.acknowledgments h4{
|
110 |
+
margin: 1.25em 0 .25em 0;
|
111 |
+
font-weight: bold;
|
112 |
+
font-size: 115%;
|
113 |
+
}
|
114 |
+
"""
|
115 |
+
|
116 |
+
examples = [
|
117 |
+
[
|
118 |
+
'a photograph of a happy person wearing sunglasses by the sea',
|
119 |
+
'faces',
|
120 |
+
2,
|
121 |
+
2,
|
122 |
+
],
|
123 |
+
[
|
124 |
+
'a photograph of Captain Jean Luc Picard',
|
125 |
+
'faces',
|
126 |
+
2,
|
127 |
+
2,
|
128 |
+
],
|
129 |
+
[
|
130 |
+
'a mountain in the middle of the sea',
|
131 |
+
'landscape',
|
132 |
+
2,
|
133 |
+
2,
|
134 |
+
],
|
135 |
+
[
|
136 |
+
'The sun setting over the sea',
|
137 |
+
'landscape',
|
138 |
+
2,
|
139 |
+
2,
|
140 |
+
],
|
141 |
+
]
|
142 |
+
|
143 |
+
def main():
|
144 |
+
block = gr.Blocks(css=css)
|
145 |
+
|
146 |
+
with block:
|
147 |
+
gr.HTML(
|
148 |
+
"""
|
149 |
+
<div style="text-align: center; max-width: 650px; margin: 0 auto;">
|
150 |
+
<div>
|
151 |
+
<img class="logo" src="https://lambdalabs.com/static/images/lambda-logo.svg" alt="Lambda Logo"
|
152 |
+
style="margin: auto; max-width: 7rem;">
|
153 |
+
<h1 style="font-weight: 900; font-size: 3rem;">
|
154 |
+
clip2latent
|
155 |
+
</h1>
|
156 |
+
</div>
|
157 |
+
<p style="font-size: 94%">
|
158 |
+
Official demo for <em>clip2latent: Text driven sampling of a pre-trained StyleGAN using denoising diffusion and CLIP</em>, accepted to BMVC 2022
|
159 |
+
</p>
|
160 |
+
<p style="margin-bottom: 10px; font-size: 94%">
|
161 |
+
Get the <a href="https://github.com/justinpinkney/clip2latent">code on GitHub</a>, see the <a href="#">paper on Arxiv</a>.
|
162 |
+
</p>
|
163 |
+
</div>
|
164 |
+
"""
|
165 |
+
)
|
166 |
+
with gr.Group():
|
167 |
+
with gr.Box():
|
168 |
+
with gr.Row().style(mobile_collapse=False, equal_height=True):
|
169 |
+
text = gr.Textbox(
|
170 |
+
label="Enter your prompt",
|
171 |
+
show_label=False,
|
172 |
+
max_lines=1,
|
173 |
+
placeholder="Enter your prompt",
|
174 |
+
).style(
|
175 |
+
border=(True, False, True, True),
|
176 |
+
rounded=(True, False, False, True),
|
177 |
+
container=False,
|
178 |
+
)
|
179 |
+
btn = gr.Button("Generate image").style(
|
180 |
+
margin=False,
|
181 |
+
rounded=(False, True, True, False),
|
182 |
+
)
|
183 |
+
|
184 |
+
gallery = gr.Gallery(
|
185 |
+
label="Generated images", show_label=False, elem_id="gallery"
|
186 |
+
).style(grid=[2], height="auto")
|
187 |
+
|
188 |
+
|
189 |
+
with gr.Row(elem_id="advanced-options"):
|
190 |
+
model_select = gr.Dropdown(label="Model", choices=["faces", "landscape"], value="faces",)
|
191 |
+
samples = gr.Slider(label="Images", minimum=1, maximum=4, value=2, step=1)
|
192 |
+
scale = gr.Slider(
|
193 |
+
label="Guidance Scale", minimum=0, maximum=10, value=2, step=0.5
|
194 |
+
)
|
195 |
+
|
196 |
+
|
197 |
+
ex = gr.Examples(examples=examples, fn=infer, inputs=[text, model_select, samples, scale], outputs=gallery, cache_examples=False)
|
198 |
+
ex.dataset.headers = [""]
|
199 |
+
|
200 |
+
text.submit(infer, inputs=[text, model_select, samples, scale], outputs=gallery)
|
201 |
+
btn.click(infer, inputs=[text, model_select, samples, scale], outputs=gallery)
|
202 |
+
gr.HTML(
|
203 |
+
"""
|
204 |
+
<div class="footer">
|
205 |
+
<p> Gradio Demo by Lambda Labs
|
206 |
+
</p>
|
207 |
+
</div>
|
208 |
+
<div class="acknowledgments">
|
209 |
+
<img src="https://raw.githubusercontent.com/justinpinkney/clip2latent/main/images/headline-large.jpeg"></img>
|
210 |
+
<br>
|
211 |
+
<h2 style="font-size:1.5em">clip2latent: Text driven sampling of a pre-trained StyleGAN using denoising diffusion and CLIP</h2>
|
212 |
+
<p>Justin N. M. Pinkney and Chuan Li @ <a href="https://lambdalabs.com/">Lambda Inc.</a>
|
213 |
+
<br>
|
214 |
+
<br>
|
215 |
+
<em>Abstract:</em>
|
216 |
+
We introduce a new method to efficiently create text-to-image models from a pre-trained CLIP and StyleGAN.
|
217 |
+
It enables text driven sampling with an existing generative model without any external data or fine-tuning.
|
218 |
+
This is achieved by training a diffusion model conditioned on CLIP embeddings to sample latent vectors of a pre-trained StyleGAN, which we call <em>clip2latent</em>.
|
219 |
+
We leverage the alignment between CLIP’s image and text embeddings to avoid the need for any text labelled data for training the conditional diffusion model.
|
220 |
+
We demonstrate that clip2latent allows us to generate high-resolution (1024x1024 pixels) images based on text prompts with fast sampling, high image quality, and low training compute and data requirements.
|
221 |
+
We also show that the use of the well studied StyleGAN architecture, without further fine-tuning, allows us to directly apply existing methods to control and modify the generated images adding a further layer of control to our text-to-image pipeline.
|
222 |
+
</p>
|
223 |
+
<br>
|
224 |
+
<p>Trained using <a href="https://lambdalabs.com/service/gpu-cloud">Lambda GPU Cloud</a></p>
|
225 |
+
</div>
|
226 |
+
"""
|
227 |
+
)
|
228 |
+
|
229 |
+
block.queue()
|
230 |
+
block.launch()
|
231 |
+
|
232 |
+
|
233 |
+
if __name__ == "__main__":
|
234 |
+
main()
|
requirements.txt
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
--extra-index-url https://download.pytorch.org/whl/cu113
|
2 |
+
torch
|
3 |
+
torchvision
|
4 |
+
wandb==0.12.16
|
5 |
+
ninja==1.10.2.3
|
6 |
+
dalle2-pytorch==0.2.38
|
7 |
+
hydra-core==1.1.2
|
8 |
+
typer==0.4.1
|
9 |
+
joblib==1.1.0
|
10 |
+
webdataset==0.2.5
|
11 |
+
gradio==3.4
|
12 |
+
protobuf==3.20.1
|
13 |
+
scipy==1.9.1
|
14 |
+
git+https://github.com/justinpinkney/clip2latent.git
|