File size: 6,599 Bytes
6aea3f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
from contextlib import nullcontext
import gradio as gr
import torch
from torch import autocast
from diffusers import StableDiffusionPipeline


device = "cuda" if torch.cuda.is_available() else "cpu"
context = autocast if device == "cuda" else nullcontext
dtype = torch.float16 if device == "cuda" else torch.float32

model_id = 'eolecvk/dreambooth-avatar'
pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=dtype)
pipe = pipe.to(device)



def infer(prompt, n_samples, steps, scale):

    with context("cuda"):
        images = pipe(n_samples*[prompt], guidance_scale=scale, num_inference_steps=steps).images

    return images

css = """
        a {
            color: inherit;
            text-decoration: underline;
        }
        .gradio-container {
            font-family: 'IBM Plex Sans', sans-serif;
        }
        .gr-button {
            color: white;
            border-color: #9d66e5;
            background: #9d66e5;
        }
        input[type='range'] {
            accent-color: #9d66e5;
        }
        .dark input[type='range'] {
            accent-color: #dfdfdf;
        }
        .container {
            max-width: 730px;
            margin: auto;
            padding-top: 1.5rem;
        }
        #gallery {
            min-height: 22rem;
            margin-bottom: 15px;
            margin-left: auto;
            margin-right: auto;
            border-bottom-right-radius: .5rem !important;
            border-bottom-left-radius: .5rem !important;
        }
        #gallery>div>.h-full {
            min-height: 20rem;
        }
        .details:hover {
            text-decoration: underline;
        }
        .gr-button {
            white-space: nowrap;
        }
        .gr-button:focus {
            border-color: rgb(147 197 253 / var(--tw-border-opacity));
            outline: none;
            box-shadow: var(--tw-ring-offset-shadow), var(--tw-ring-shadow), var(--tw-shadow, 0 0 #0000);
            --tw-border-opacity: 1;
            --tw-ring-offset-shadow: var(--tw-ring-inset) 0 0 0 var(--tw-ring-offset-width) var(--tw-ring-offset-color);
            --tw-ring-shadow: var(--tw-ring-inset) 0 0 0 calc(3px var(--tw-ring-offset-width)) var(--tw-ring-color);
            --tw-ring-color: rgb(191 219 254 / var(--tw-ring-opacity));
            --tw-ring-opacity: .5;
        }
        #advanced-options {
            margin-bottom: 20px;
        }
        .footer {
            margin-bottom: 45px;
            margin-top: 35px;
            text-align: center;
            border-bottom: 1px solid #e5e5e5;
        }
        .footer>p {
            font-size: .8rem;
            display: inline-block;
            padding: 0 10px;
            transform: translateY(10px);
            background: white;
        }
        .dark .logo{ filter: invert(1); }
        .dark .footer {
            border-color: #303030;
        }
        .dark .footer>p {
            background: #0b0f19;
        }
        .acknowledgments h4{
            margin: 1.25em 0 .25em 0;
            font-weight: bold;
            font-size: 115%;
        }
"""

block = gr.Blocks(css=css)

examples = [
    [
        'Yoda',
        2,
        7.5,
    ],
    [
        'Abraham Lincoln',
        2,
        7.5,
    ],
    [
        'George Washington',
        2,
        7,
    ],
]

with block:
    gr.HTML(
        """
            <div style="text-align: center; max-width: 650px; margin: 0 auto;">
              <div>
                <img class="logo" src="https://lambdalabs.com/static/images/lambda-logo.svg" alt="Lambda Logo"
                    style="margin: auto; max-width: 7rem;">
                <h1 style="font-weight: 900; font-size: 3rem;">
                  Naruto text to image
                </h1>
              </div>
              <p style="margin-bottom: 10px; font-size: 94%">
              Generate new Naruto anime character from a text description,
                <a href="https://lambdalabs.com/blog/how-to-fine-tune-stable-diffusion-how-we-made-the-text-to-pokemon-model-at-lambda/">created by Lambda Labs</a>.
              </p>
            </div>
        """
    )
    with gr.Group():
        with gr.Box():
            with gr.Row().style(mobile_collapse=False, equal_height=True):
                text = gr.Textbox(
                    label="Enter your prompt",
                    show_label=False,
                    max_lines=1,
                    placeholder="Enter your prompt",
                ).style(
                    border=(True, False, True, True),
                    rounded=(True, False, False, True),
                    container=False,
                )
                btn = gr.Button("Generate image").style(
                    margin=False,
                    rounded=(False, True, True, False),
                )

        gallery = gr.Gallery(
            label="Generated images", show_label=False, elem_id="gallery"
        ).style(grid=[2], height="auto")


        with gr.Row(elem_id="advanced-options"):
            samples = gr.Slider(label="Images", minimum=1, maximum=4, value=2, step=1)
            steps = gr.Slider(label="Steps", minimum=5, maximum=50, value=50, step=5)
            scale = gr.Slider(
                label="Guidance Scale", minimum=0, maximum=50, value=7.5, step=0.1
            )


        ex = gr.Examples(examples=examples, fn=infer, inputs=[text, samples, scale], outputs=gallery, cache_examples=False)
        ex.dataset.headers = [""]


        text.submit(infer, inputs=[text, samples, steps, scale], outputs=gallery)
        btn.click(infer, inputs=[text, samples, steps, scale], outputs=gallery)
        gr.HTML(
            """
                <div class="footer">
                    <p> Gradio Demo by 🤗 Hugging Face and Lambda Labs
                    </p>
                </div>
                <div class="acknowledgments">
                    <p> Put in a text prompt and generate your own Naruto anime character, no "prompt engineering" required!
                    <p>If you want to find out how we made this model read about it in <a href="https://lambdalabs.com/blog/how-to-fine-tune-stable-diffusion-how-we-made-the-text-to-pokemon-model-at-lambda/">this blog post</a>.
                    <p>And if you want to train your own Stable Diffusion variants, see our <a href="https://github.com/LambdaLabsML/examples/tree/main/stable-diffusion-finetuning">Examples Repo</a>!
                    <p>Trained by Eole Cervenka at <a href="https://lambdalabs.com/">Lambda Labs</a>.</p>
               </div>
           """
        )

block.launch()