from contextlib import nullcontext import gradio as gr import torch from torch import autocast from diffusers import StableDiffusionPipeline device = "cuda" if torch.cuda.is_available() else "cpu" context = autocast if device == "cuda" else nullcontext dtype = torch.float16 if device == "cuda" else torch.float32 model_id = 'eolecvk/dreambooth-avatar' pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=dtype) pipe = pipe.to(device) def infer(prompt, n_samples, steps, scale): with context("cuda"): images = pipe(n_samples*[prompt], guidance_scale=scale, num_inference_steps=steps).images return images css = """ a { color: inherit; text-decoration: underline; } .gradio-container { font-family: 'IBM Plex Sans', sans-serif; } .gr-button { color: white; border-color: #9d66e5; background: #9d66e5; } input[type='range'] { accent-color: #9d66e5; } .dark input[type='range'] { accent-color: #dfdfdf; } .container { max-width: 730px; margin: auto; padding-top: 1.5rem; } #gallery { min-height: 22rem; margin-bottom: 15px; margin-left: auto; margin-right: auto; border-bottom-right-radius: .5rem !important; border-bottom-left-radius: .5rem !important; } #gallery>div>.h-full { min-height: 20rem; } .details:hover { text-decoration: underline; } .gr-button { white-space: nowrap; } .gr-button:focus { border-color: rgb(147 197 253 / var(--tw-border-opacity)); outline: none; box-shadow: var(--tw-ring-offset-shadow), var(--tw-ring-shadow), var(--tw-shadow, 0 0 #0000); --tw-border-opacity: 1; --tw-ring-offset-shadow: var(--tw-ring-inset) 0 0 0 var(--tw-ring-offset-width) var(--tw-ring-offset-color); --tw-ring-shadow: var(--tw-ring-inset) 0 0 0 calc(3px var(--tw-ring-offset-width)) var(--tw-ring-color); --tw-ring-color: rgb(191 219 254 / var(--tw-ring-opacity)); --tw-ring-opacity: .5; } #advanced-options { margin-bottom: 20px; } .footer { margin-bottom: 45px; margin-top: 35px; text-align: center; border-bottom: 1px solid #e5e5e5; } .footer>p { font-size: .8rem; display: inline-block; padding: 0 10px; transform: translateY(10px); background: white; } .dark .logo{ filter: invert(1); } .dark .footer { border-color: #303030; } .dark .footer>p { background: #0b0f19; } .acknowledgments h4{ margin: 1.25em 0 .25em 0; font-weight: bold; font-size: 115%; } """ block = gr.Blocks(css=css) examples = [ [ 'Yoda', 2, 7.5, ], [ 'Abraham Lincoln', 2, 7.5, ], [ 'George Washington', 2, 7, ], ] with block: gr.HTML( """

Naruto text to image

Generate new Naruto anime character from a text description, created by Lambda Labs.

""" ) with gr.Group(): with gr.Box(): with gr.Row().style(mobile_collapse=False, equal_height=True): text = gr.Textbox( label="Enter your prompt", show_label=False, max_lines=1, placeholder="Enter your prompt", ).style( border=(True, False, True, True), rounded=(True, False, False, True), container=False, ) btn = gr.Button("Generate image").style( margin=False, rounded=(False, True, True, False), ) gallery = gr.Gallery( label="Generated images", show_label=False, elem_id="gallery" ).style(grid=[2], height="auto") with gr.Row(elem_id="advanced-options"): samples = gr.Slider(label="Images", minimum=1, maximum=4, value=2, step=1) steps = gr.Slider(label="Steps", minimum=5, maximum=50, value=50, step=5) scale = gr.Slider( label="Guidance Scale", minimum=0, maximum=50, value=7.5, step=0.1 ) ex = gr.Examples(examples=examples, fn=infer, inputs=[text, samples, scale], outputs=gallery, cache_examples=False) ex.dataset.headers = [""] text.submit(infer, inputs=[text, samples, steps, scale], outputs=gallery) btn.click(infer, inputs=[text, samples, steps, scale], outputs=gallery) gr.HTML( """

Put in a text prompt and generate your own Naruto anime character, no "prompt engineering" required!

If you want to find out how we made this model read about it in this blog post.

And if you want to train your own Stable Diffusion variants, see our Examples Repo!

Trained by Eole Cervenka at Lambda Labs.

""" ) block.launch()