Spaces:
Runtime error
Runtime error
File size: 5,136 Bytes
2e1faab cda9ccb 3b352d4 964b7b7 3b352d4 964b7b7 3b352d4 964b7b7 3b352d4 964b7b7 3b352d4 964b7b7 3b352d4 964b7b7 3b352d4 964b7b7 3b352d4 964b7b7 3b352d4 964b7b7 3b352d4 964b7b7 3b352d4 964b7b7 cda9ccb 964b7b7 cda9ccb 964b7b7 cda9ccb 964b7b7 cda9ccb 964b7b7 cda9ccb 964b7b7 cda9ccb 964b7b7 cda9ccb 3b352d4 581ca56 964b7b7 f312659 964b7b7 581ca56 964b7b7 581ca56 964b7b7 50c5448 3b352d4 cda9ccb 3b352d4 964b7b7 3b352d4 964b7b7 3b352d4 964b7b7 3b352d4 964b7b7 50c5448 964b7b7 3b352d4 964b7b7 3b352d4 964b7b7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 |
from __future__ import annotations
import random
import gradio as gr
import matplotlib
import matplotlib.pyplot as plt
import numpy as np
import torch
from CCAgT_utils.categories import CategoriesInfos
from CCAgT_utils.types.mask import Mask
from CCAgT_utils.visualization import plot
from PIL import Image
from torch import nn
from transformers import SegformerFeatureExtractor
from transformers import SegformerForSemanticSegmentation
from transformers.modeling_outputs import SemanticSegmenterOutput
matplotlib.use('Agg')
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model_hub_name = 'lapix/segformer-b3-finetuned-ccagt-400-300'
model = SegformerForSemanticSegmentation.from_pretrained(
model_hub_name,
).to(device)
model.eval()
feature_extractor = SegformerFeatureExtractor.from_pretrained(
model_hub_name,
)
def segment(
image: Image.Image,
) -> SemanticSegmenterOutput:
inputs = feature_extractor(
image,
return_tensors='pt',
).to(device)
outputs = model(**inputs)
return outputs
def post_processing(
outputs: SemanticSegmenterOutput,
target_size: tuple[int, int],
) -> np.ndarray:
logits = outputs.logits.cpu()
upsampled_logits = nn.functional.interpolate(
logits,
size=target_size,
mode='bilinear',
align_corners=False,
)
segmentation_mask = upsampled_logits.argmax(dim=1)[0]
return np.array(segmentation_mask)
def colorize(
mask: Mask,
) -> np.ndarray:
return mask.colorized(CategoriesInfos()) / 255
# Copied from https://github.com/albumentations-team/albumentations/blob/b1af92ab8e57279f5acd5987770a86a8d6b6b0e5/albumentations/augmentations/crops/functional.py#L35
def get_random_crop_coords(
height: int,
width: int,
crop_height: int,
crop_width: int,
h_start: float,
w_start: float,
):
y1 = int((height - crop_height + 1) * h_start)
y2 = y1 + crop_height
x1 = int((width - crop_width + 1) * w_start)
x2 = x1 + crop_width
return x1, y1, x2, y2
# Copied from https://github.com/albumentations-team/albumentations/blob/b1af92ab8e57279f5acd5987770a86a8d6b6b0e5/albumentations/augmentations/crops/functional.py#L46
def random_crop(
img: np.ndarray,
crop_height: int,
crop_width: int,
h_start: float,
w_start: float,
) -> np.ndarray:
height, width = img.shape[:2]
x1, y1, x2, y2 = get_random_crop_coords(
height, width, crop_height, crop_width, h_start, w_start,
)
img = img[y1:y2, x1:x2]
return img
def process_big_images(
image: Image.Image,
) -> Mask:
'''Process and post-processing for images bigger than 400x300'''
img = np.asarray(image)
if img.shape[0] > 300 or img.shape[1] > 400:
img = random_crop(img, 300, 400, random.random(), random.random())
target_size = (img.shape[0], img.shape[1])
outputs = segment(Image.fromarray(img))
msk = post_processing(outputs, target_size)
return img, Mask(msk)
def image_with_mask(
image: Image.Image,
mask: Mask,
) -> plt.Figure:
fig = plt.figure(dpi=600)
plt.imshow(image)
plt.imshow(
mask.categorical,
cmap=mask.cmap(CategoriesInfos()),
vmax=max(mask.unique_ids),
vmin=min(mask.unique_ids),
interpolation='nearest',
alpha=0.4,
)
plt.axis('off')
plt.tight_layout(pad=0)
return fig
def categories_map(
mask: Mask,
) -> plt.Figure:
fig = plt.figure(dpi=600)
handles = plot.create_handles(
CategoriesInfos(), selected_categories=mask.unique_ids,
)
plt.legend(handles=handles, fontsize=24, loc='center')
plt.axis('off')
return fig
def main(image):
image = Image.fromarray(image)
img, mask = process_big_images(image)
mask_colorized = colorize(mask)
fig = image_with_mask(img, mask)
return categories_map(mask), Image.fromarray(img), mask_colorized, fig
title = 'SegFormer (b3) - CCAgT dataset'
description = f"""
This is demo for the SegFormer fine-tuned on sub-dataset from
[CCAgT dataset](https://huggingface.co/datasets/lapix/CCAgT). This model
was trained to segment cervical cells silver-stained (AgNOR technique)
images with resolution of 400x300. The model was available at HF hub at
[{model_hub_name}](https://huggingface.co/{model_hub_name}). If input
an image bigger than 400x300, the demo will random crop it.
"""
examples = [
[f'https://hf.co/{model_hub_name}/resolve/main/sampleA.png'],
[f'https://hf.co/{model_hub_name}/resolve/main/sampleB.png'],
] + [
[f'https://datasets-server.huggingface.co/assets/lapix/CCAgT/--/semantic_segmentation/test/{x}/image/image.jpg']
for x in {3, 10, 12, 18, 35, 78, 89}
]
demo = gr.Interface(
main,
inputs=[gr.Image()],
outputs=[
gr.Plot(label='Categories map'),
gr.Image(label='Image'),
gr.Image(label='Mask'),
gr.Plot(label='Image with mask'),
],
title=title,
description=description,
examples=examples,
allow_flagging='never',
cache_examples=False,
)
if __name__ == '__main__':
demo.launch()
|