johnnv's picture
update app
964b7b7
raw
history blame
4.59 kB
import cv2
import gradio as gr
import matplotlib
import matplotlib.pyplot as plt
import numpy as np
import torch
from CCAgT_utils.categories import CategoriesInfos
from CCAgT_utils.slice import __create_xy_slice
from CCAgT_utils.types.mask import Mask
from CCAgT_utils.visualization import plot
from PIL import Image
from torch import nn
from transformers import SegformerFeatureExtractor
from transformers import SegformerForSemanticSegmentation
from transformers.modeling_outputs import SemanticSegmenterOutput
matplotlib.use('Agg')
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model_hub_name = 'lapix/segformer-b3-finetuned-ccagt-400-300'
model = SegformerForSemanticSegmentation.from_pretrained(
model_hub_name,
).to(device)
model.eval()
feature_extractor = SegformerFeatureExtractor.from_pretrained(
model_hub_name,
)
def segment(
image: Image.Image,
) -> SemanticSegmenterOutput:
inputs = feature_extractor(
image,
return_tensors='pt',
).to(device)
outputs = model(**inputs)
return outputs
def post_processing(
outputs: SemanticSegmenterOutput,
target_size: tuple[int, int],
) -> np.ndarray:
logits = outputs.logits.cpu()
upsampled_logits = nn.functional.interpolate(
logits,
size=target_size,
mode='bilinear',
align_corners=False,
)
segmentation_mask = upsampled_logits.argmax(dim=1)[0]
return np.array(segmentation_mask)
def colorize(
mask: Mask,
) -> np.ndarray:
return mask.colorized(CategoriesInfos()) / 255
def check_and_resize(
image: np.ndarray,
) -> np.ndarray:
if image.shape[0] > 1200 or image.shape[1] > 1600:
r = 1600.0 / image.shape[1]
dim = (1600, int(image.shape[0] * r))
return cv2.resize(image, dim, interpolation=cv2.INTER_AREA)
return image
def process_big_images(
image: Image.Image,
) -> Mask:
'''Process and post-processing for images bigger than 400x300'''
img = check_and_resize(np.asarray(image))
mask = np.zeros(shape=(img.shape[0], img.shape[1]), dtype=np.uint8)
for bbox in __create_xy_slice(image.size[1], image.size[0], 300, 400):
part = cv2.copyMakeBorder(
img,
bbox.y_init,
bbox.y_end,
bbox.x_init,
bbox.x_end,
cv2.BORDER_REFLECT,
)
target_size = (part.shape[0], part.shape[1])
outputs = segment(Image.fromarray(part))
msk = post_processing(outputs, target_size)
mask[bbox.slice_y, bbox.slice_x] = msk[bbox.slice_y, bbox.slice_x]
return Mask(mask)
def image_with_mask(
image: Image.Image,
mask: Mask,
) -> plt.Figure:
fig = plt.figure(dpi=600)
plt.imshow(image)
plt.imshow(
mask.categorical,
cmap=mask.cmap(CategoriesInfos()),
vmax=max(mask.unique_ids),
vmin=min(mask.unique_ids),
interpolation='nearest',
alpha=0.4,
)
plt.axis('off')
return fig
def categories_map(
mask: Mask,
) -> plt.Figure:
fig = plt.figure(dpi=600)
handles = plot.create_handles(
CategoriesInfos(), selected_categories=mask.unique_ids,
)
plt.legend(handles=handles, fontsize=24, loc='center')
plt.axis('off')
return fig
def main(image):
img = Image.fromarray(image)
mask = process_big_images(img)
mask_colorized = colorize(mask)
fig = image_with_mask(img, mask)
return categories_map(mask), mask_colorized, fig
title = 'SegFormer (b3) - CCAgT dataset'
description = f"""
This is demo for the SegFormer fine-tuned on sub-dataset from
[CCAgT dataset](https://huggingface.co/datasets/lapix/CCAgT). This model
was trained to segment cervical cells silver-stained (AgNOR technique)
images with resolution of 400x300. The model was available at HF hub at
[{model_hub_name}](https://huggingface.co/{model_hub_name}).
"""
examples = [
[f'https://hf.co/{model_hub_name}/resolve/main/sampleA.png'],
[f'https://hf.co/{model_hub_name}/resolve/main/sampleB.png'],
] + [
[f'https://datasets-server.huggingface.co/assets/lapix/CCAgT/--/semantic_segmentation/test/{x}/image/image.jpg']
for x in {3, 10, 12, 18, 35, 78, 89}
]
demo = gr.Interface(
main,
inputs=[gr.Image()],
outputs=[
gr.Plot(label='Categories map'),
gr.Image(label='Mask'),
gr.Plot(label='Image with mask'),
],
title=title,
description=description,
examples=examples,
allow_flagging='never',
cache_examples=False,
)
if __name__ == '__main__':
demo.launch()