larsthepenguin's picture
Upload folder using huggingface_hub
272de00 verified
# SPDX-FileCopyrightText: Copyright (c) 2022-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
from pathlib import Path
from typing import Optional
from transformers import AutoTokenizer, T5Tokenizer
import tensorrt_llm
DEFAULT_HF_MODEL_DIRS = {
'baichuan': 'baichuan-inc/Baichuan-13B-Chat',
'bloom': 'bigscience/bloom-560m',
'chatglm_6b': 'THUDM/chatglm-6b',
'chatglm2_6b': 'THUDM/chatglm2-6b',
'chatglm2_6b_32k': 'THUDM/chatglm2-6b-32k',
'chatglm3_6b': 'THUDM/chatglm3-6b',
'chatglm3_6b_base': 'THUDM/chatglm3-6b-base',
'chatglm3_6b_32k': 'THUDM/chatglm3-6b-32k',
'falcon': 'tiiuae/falcon-rw-1b',
'glm_10b': 'THUDM/glm-10b',
'gpt': 'gpt2-medium',
'gptj': 'EleutherAI/gpt-j-6b',
'gptneox': 'EleutherAI/gpt-neox-20b',
'internlm': 'internlm/internlm-chat-7b',
'llama': 'meta-llama/Llama-2-7b-hf',
'mpt': 'mosaicml/mpt-7b',
'opt': 'facebook/opt-350m',
'qwen': 'Qwen/Qwen-7B',
}
DEFAULT_PROMPT_TEMPLATES = {
'internlm':
"<|User|>:{input_text}<eoh>\n<|Bot|>:",
'qwen':
"<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n<|im_start|>user\n{input_text}<|im_end|>\n<|im_start|>assistant\n",
}
def read_model_name(engine_dir: str):
engine_version = tensorrt_llm.builder.get_engine_version(engine_dir)
with open(Path(engine_dir) / "config.json", 'r') as f:
config = json.load(f)
if engine_version is None:
return config['builder_config']['name']
return config['pretrained_config']['architecture']
def throttle_generator(generator, stream_interval):
for i, out in enumerate(generator):
if not i % stream_interval:
yield out
if i % stream_interval:
yield out
def load_tokenizer(tokenizer_dir: Optional[str] = None,
vocab_file: Optional[str] = None,
model_name: str = 'gpt',
tokenizer_type: Optional[str] = None):
if vocab_file is None:
use_fast = True
if tokenizer_type is not None and tokenizer_type == "llama":
use_fast = False
# Should set both padding_side and truncation_side to be 'left'
tokenizer = AutoTokenizer.from_pretrained(tokenizer_dir,
legacy=False,
padding_side='left',
truncation_side='left',
trust_remote_code=True,
tokenizer_type=tokenizer_type,
use_fast=use_fast)
else:
# For gpt-next, directly load from tokenizer.model
assert model_name == 'gpt'
tokenizer = T5Tokenizer(vocab_file=vocab_file,
padding_side='left',
truncation_side='left')
if model_name == 'qwen':
with open(Path(tokenizer_dir) / "generation_config.json") as f:
gen_config = json.load(f)
chat_format = gen_config['chat_format']
if chat_format == 'raw':
pad_id = gen_config['pad_token_id']
end_id = gen_config['eos_token_id']
elif chat_format == 'chatml':
pad_id = tokenizer.im_end_id
end_id = tokenizer.im_end_id
else:
raise Exception(f"unknown chat format: {chat_format}")
elif model_name == 'glm_10b':
pad_id = tokenizer.pad_token_id
end_id = tokenizer.eop_token_id
else:
if tokenizer.pad_token_id is None:
tokenizer.pad_token_id = tokenizer.eos_token_id
pad_id = tokenizer.pad_token_id
end_id = tokenizer.eos_token_id
return tokenizer, pad_id, end_id