linoyts HF staff commited on
Commit
978580d
β€’
1 Parent(s): 7ebd81a

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +48 -8
app.py CHANGED
@@ -27,6 +27,11 @@ def HWC3(x):
27
  y = y.clip(0, 255).astype(np.uint8)
28
  return y
29
 
 
 
 
 
 
30
 
31
  # load pipelines
32
  vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
@@ -62,10 +67,12 @@ def generate(slider_x, slider_y, prompt, seed, iterations, steps,
62
  avg_diff_y_1, avg_diff_y_2,
63
  img2img_type = None,
64
  img = None):
 
65
  start_time = time.time()
66
  # check if avg diff for directions need to be re-calculated
67
  print("slider_x", slider_x)
68
  print("x_concept_1", x_concept_1, "x_concept_2", x_concept_2)
 
69
  if not sorted(slider_x) == sorted([x_concept_1, x_concept_2]):
70
  avg_diff = clip_slider.find_latent_direction(slider_x[0], slider_x[1], num_iterations=iterations)
71
  avg_diff_0 = avg_diff[0].to(torch.float16)
@@ -73,6 +80,7 @@ def generate(slider_x, slider_y, prompt, seed, iterations, steps,
73
  x_concept_1, x_concept_2 = slider_x[0], slider_x[1]
74
 
75
  print("avg_diff_0", avg_diff_0.dtype)
 
76
  if not sorted(slider_y) == sorted([y_concept_1, y_concept_2]):
77
  avg_diff_2nd = clip_slider.find_latent_direction(slider_y[0], slider_y[1], num_iterations=iterations)
78
  avg_diff_2nd_0 = avg_diff_2nd[0].to(torch.float16)
@@ -80,10 +88,20 @@ def generate(slider_x, slider_y, prompt, seed, iterations, steps,
80
  y_concept_1, y_concept_2 = slider_y[0], slider_y[1]
81
  end_time = time.time()
82
  print(f"direction time: {end_time - start_time:.2f} ms")
 
83
  start_time = time.time()
84
- image = clip_slider.generate(prompt, scale=0, scale_2nd=0, seed=seed, num_inference_steps=steps, avg_diff=(avg_diff_0,avg_diff_1), avg_diff_2nd=(avg_diff_2nd_0,avg_diff_2nd_1))
 
 
 
 
 
 
 
 
85
  end_time = time.time()
86
  print(f"generation time: {end_time - start_time:.2f} ms")
 
87
  comma_concepts_x = ', '.join(slider_x)
88
  comma_concepts_y = ', '.join(slider_y)
89
 
@@ -95,14 +113,36 @@ def generate(slider_x, slider_y, prompt, seed, iterations, steps,
95
  return gr.update(label=comma_concepts_x, interactive=True),gr.update(label=comma_concepts_y, interactive=True), x_concept_1, x_concept_2, y_concept_1, y_concept_2, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2, image
96
 
97
  @spaces.GPU
98
- def update_x(x,y,prompt, seed, steps, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2):
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
99
  avg_diff = (avg_diff_x_1.cuda(), avg_diff_x_2.cuda())
100
  avg_diff_2nd = (avg_diff_y_1.cuda(), avg_diff_y_2.cuda())
101
  image = clip_slider.generate(prompt, scale=x, scale_2nd=y, seed=seed, num_inference_steps=steps, avg_diff=avg_diff,avg_diff_2nd=avg_diff_2nd)
102
  return image
103
 
104
  @spaces.GPU
105
- def update_y(x,y,prompt, seed, steps, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2):
 
 
 
106
  avg_diff = (avg_diff_x_1.cuda(), avg_diff_x_2.cuda())
107
  avg_diff_2nd = (avg_diff_y_1.cuda(), avg_diff_y_2.cuda())
108
  image = clip_slider.generate(prompt, scale=x, scale_2nd=y, seed=seed, num_inference_steps=steps, avg_diff=avg_diff,avg_diff_2nd=avg_diff_2nd)
@@ -144,7 +184,7 @@ with gr.Blocks(css=css) as demo:
144
  avg_diff_y_1 = gr.State()
145
  avg_diff_y_2 = gr.State()
146
 
147
- with gr.Tab(""):
148
  with gr.Row():
149
  with gr.Column():
150
  slider_x = gr.Dropdown(label="Slider X concept range", allow_custom_value=True, multiselect=True, max_choices=2)
@@ -184,13 +224,13 @@ with gr.Blocks(css=css) as demo:
184
  submit.click(fn=generate,
185
  inputs=[slider_x, slider_y, prompt, seed, iterations, steps, x_concept_1, x_concept_2, y_concept_1, y_concept_2, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2],
186
  outputs=[x, y, x_concept_1, x_concept_2, y_concept_1, y_concept_2, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2, output_image])
187
- x.change(fn=update_x, inputs=[x,y, prompt, seed, steps, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2], outputs=[output_image])
188
- y.change(fn=update_y, inputs=[x,y, prompt, seed, steps, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2], outputs=[output_image])
189
  submit_a.click(fn=generate,
190
  inputs=[slider_x_a, slider_y_a, prompt_a, seed_a, iterations_a, steps_a, x_concept_1, x_concept_2, y_concept_1, y_concept_2, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2],
191
  outputs=[x_a, y_a, x_concept_1, x_concept_2, y_concept_1, y_concept_2, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2, output_image_a])
192
- x_a.change(fn=update_x, inputs=[x_a,y_a, prompt_a, seed_a, steps_a, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2], outputs=[output_image_a])
193
- y_a.change(fn=update_y, inputs=[x_a,y_a, prompt, seed_a, steps_a, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2], outputs=[output_image_a])
194
 
195
 
196
  if __name__ == "__main__":
 
27
  y = y.clip(0, 255).astype(np.uint8)
28
  return y
29
 
30
+ def process_controlnet_img(image):
31
+ controlnet_img = np.array(image)
32
+ controlnet_img = cv2.Canny(controlnet_img, 100, 200)
33
+ controlnet_img = HWC3(controlnet_img)
34
+ controlnet_img = Image.fromarray(controlnet_img)
35
 
36
  # load pipelines
37
  vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
 
67
  avg_diff_y_1, avg_diff_y_2,
68
  img2img_type = None,
69
  img = None):
70
+
71
  start_time = time.time()
72
  # check if avg diff for directions need to be re-calculated
73
  print("slider_x", slider_x)
74
  print("x_concept_1", x_concept_1, "x_concept_2", x_concept_2)
75
+
76
  if not sorted(slider_x) == sorted([x_concept_1, x_concept_2]):
77
  avg_diff = clip_slider.find_latent_direction(slider_x[0], slider_x[1], num_iterations=iterations)
78
  avg_diff_0 = avg_diff[0].to(torch.float16)
 
80
  x_concept_1, x_concept_2 = slider_x[0], slider_x[1]
81
 
82
  print("avg_diff_0", avg_diff_0.dtype)
83
+
84
  if not sorted(slider_y) == sorted([y_concept_1, y_concept_2]):
85
  avg_diff_2nd = clip_slider.find_latent_direction(slider_y[0], slider_y[1], num_iterations=iterations)
86
  avg_diff_2nd_0 = avg_diff_2nd[0].to(torch.float16)
 
88
  y_concept_1, y_concept_2 = slider_y[0], slider_y[1]
89
  end_time = time.time()
90
  print(f"direction time: {end_time - start_time:.2f} ms")
91
+
92
  start_time = time.time()
93
+
94
+ if img2img_type=="controlnet canny" and img is not None:
95
+ control_img = process_controlnet_img(img)
96
+ image = clip_slider.generate(prompt, image=control_img, scale=0, scale_2nd=0, seed=seed, num_inference_steps=steps, avg_diff=(avg_diff_0,avg_diff_1), avg_diff_2nd=(avg_diff_2nd_0,avg_diff_2nd_1))
97
+ elif img2img_type=="ip adapter" and img is not None:
98
+ image = clip_slider.generate(prompt, ip_adapter_image=img, scale=0, scale_2nd=0, seed=seed, num_inference_steps=steps, avg_diff=(avg_diff_0,avg_diff_1), avg_diff_2nd=(avg_diff_2nd_0,avg_diff_2nd_1))
99
+ else: # text to image
100
+ image = clip_slider.generate(prompt, scale=0, scale_2nd=0, seed=seed, num_inference_steps=steps, avg_diff=(avg_diff_0,avg_diff_1), avg_diff_2nd=(avg_diff_2nd_0,avg_diff_2nd_1))
101
+
102
  end_time = time.time()
103
  print(f"generation time: {end_time - start_time:.2f} ms")
104
+
105
  comma_concepts_x = ', '.join(slider_x)
106
  comma_concepts_y = ', '.join(slider_y)
107
 
 
113
  return gr.update(label=comma_concepts_x, interactive=True),gr.update(label=comma_concepts_y, interactive=True), x_concept_1, x_concept_2, y_concept_1, y_concept_2, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2, image
114
 
115
  @spaces.GPU
116
+ def update_scales(x,y,prompt,seed, steps,
117
+ avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2,
118
+ img2img_type = None,
119
+ img = None)
120
+ avg_diff = (avg_diff_x_1.cuda(), avg_diff_x_2.cuda())
121
+ avg_diff_2nd = (avg_diff_y_1.cuda(), avg_diff_y_2.cuda())
122
+ if img2img_type=="controlnet canny" and img is not None:
123
+ control_img = process_controlnet_img(img)
124
+ image = clip_slider.generate(prompt, image=control_img, scale=x, scale_2nd=y, seed=seed, num_inference_steps=steps, avg_diff=avg_diff,avg_diff_2nd=avg_diff_2nd)
125
+ elif img2img_type=="ip adapter" and img is not None:
126
+ image = clip_slider.generate(prompt, ip_adapter_image=img, scale=x, scale_2nd=y, seed=seed, num_inference_steps=steps, avg_diff=avg_diff,avg_diff_2nd=avg_diff_2nd)
127
+ else:
128
+ image = clip_slider.generate(prompt, scale=x, scale_2nd=y, seed=seed, num_inference_steps=steps, avg_diff=avg_diff,avg_diff_2nd=avg_diff_2nd)
129
+ return image
130
+
131
+ @spaces.GPU
132
+ def update_x(x,y,prompt,seed, steps,
133
+ avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2,
134
+ img2img_type = None,
135
+ img = None):
136
  avg_diff = (avg_diff_x_1.cuda(), avg_diff_x_2.cuda())
137
  avg_diff_2nd = (avg_diff_y_1.cuda(), avg_diff_y_2.cuda())
138
  image = clip_slider.generate(prompt, scale=x, scale_2nd=y, seed=seed, num_inference_steps=steps, avg_diff=avg_diff,avg_diff_2nd=avg_diff_2nd)
139
  return image
140
 
141
  @spaces.GPU
142
+ def update_y(x,y,prompt, seed, steps,
143
+ avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2,
144
+ img2img_type = None,
145
+ img = None):
146
  avg_diff = (avg_diff_x_1.cuda(), avg_diff_x_2.cuda())
147
  avg_diff_2nd = (avg_diff_y_1.cuda(), avg_diff_y_2.cuda())
148
  image = clip_slider.generate(prompt, scale=x, scale_2nd=y, seed=seed, num_inference_steps=steps, avg_diff=avg_diff,avg_diff_2nd=avg_diff_2nd)
 
184
  avg_diff_y_1 = gr.State()
185
  avg_diff_y_2 = gr.State()
186
 
187
+ with gr.Tab("text2image"):
188
  with gr.Row():
189
  with gr.Column():
190
  slider_x = gr.Dropdown(label="Slider X concept range", allow_custom_value=True, multiselect=True, max_choices=2)
 
224
  submit.click(fn=generate,
225
  inputs=[slider_x, slider_y, prompt, seed, iterations, steps, x_concept_1, x_concept_2, y_concept_1, y_concept_2, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2],
226
  outputs=[x, y, x_concept_1, x_concept_2, y_concept_1, y_concept_2, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2, output_image])
227
+ x.change(fn=update_scales, inputs=[x,y, prompt, seed, steps, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2], outputs=[output_image])
228
+ y.change(fn=update_scales, inputs=[x,y, prompt, seed, steps, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2], outputs=[output_image])
229
  submit_a.click(fn=generate,
230
  inputs=[slider_x_a, slider_y_a, prompt_a, seed_a, iterations_a, steps_a, x_concept_1, x_concept_2, y_concept_1, y_concept_2, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2],
231
  outputs=[x_a, y_a, x_concept_1, x_concept_2, y_concept_1, y_concept_2, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2, output_image_a])
232
+ x_a.change(fn=update_scales, inputs=[x_a,y_a, prompt_a, seed_a, steps_a, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2], outputs=[output_image_a])
233
+ y_a.change(fn=update_scales, inputs=[x_a,y_a, prompt, seed_a, steps_a, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2], outputs=[output_image_a])
234
 
235
 
236
  if __name__ == "__main__":