import logging import tempfile import torch import gradio as gr from transcriber import AutoTranscriber from utils import to_srt # Configure logging logging.basicConfig( level=logging.INFO, format="%(asctime)s - %(name)s - %(levelname)s - %(message)s", force=True, ) logger = logging.getLogger(__name__) def transcribe_audio(audio_path): """Process audio file and return SRT content and preview text""" try: # Check if CUDA is available and set the device device = "cuda" if torch.cuda.is_available() else "cpu" logger.info(f"Using device: {device}") transcriber = AutoTranscriber( device=device, corrector="opencc", use_denoiser=False, with_punct=False ) transcribe_results = transcriber.transcribe(audio_path) if not transcribe_results: return None, "無字幕生成, 可能係檢測唔到語音。" # Generate SRT text for both preview and download srt_text = to_srt(transcribe_results) # Create temporary file for download with tempfile.NamedTemporaryFile(mode='w', delete=False, suffix='.srt', encoding='utf-8') as tmp: tmp.write(srt_text) return tmp.name, srt_text except Exception as e: logger.error(f"Error during transcription: {str(e)}") return None, f"Error: {str(e)}" def create_ui(): with gr.Blocks() as demo: gr.Markdown("# 粵文字幕生成器") gr.Markdown( "上傳一個音頻文件,撳「生成字幕」,過一陣就會得到 SRT 文件。目前支援格式:.mp3、.wav、.flac、.m4a、.ogg、opus、.webm") with gr.Row(): audio_input = gr.Audio(type="filepath", label="上傳音頻文件或者錄音") with gr.Row(): generate_btn = gr.Button("生成字幕 SRT 文件", variant="primary", scale=2) with gr.Row(): with gr.Column(): preview = gr.Textbox(label="預覽生成字幕", lines=10) with gr.Column(): output = gr.File(label="下載 SRT") generate_btn.click( fn=transcribe_audio, inputs=[audio_input], outputs=[output, preview] ) return demo if __name__ == "__main__": demo = create_ui() demo.launch()