ldhldh commited on
Commit
ca838f6
ยท
1 Parent(s): 50a5d7d

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +36 -0
app.py ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from transformers import AutoTokenizer
3
+ from petals import AutoDistributedModelForCausalLM
4
+
5
+ # Choose any model available at https://health.petals.dev
6
+ model_name = "daekeun-ml/Llama-2-ko-instruct-13B"
7
+
8
+ #daekeun-ml/Llama-2-ko-instruct-13B
9
+ #quantumaikr/llama-2-70b-fb16-korean
10
+
11
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
12
+ model = AutoDistributedModelForCausalLM.from_pretrained(model_name)
13
+
14
+ # Run the model as if it were on your computer
15
+ def chat(id, npc, text):
16
+ prom = ""
17
+ inputs = tokenizer(prom, return_tensors="pt")["input_ids"]
18
+ outputs = model.generate(inputs, max_new_tokens=100)
19
+ print(tokenizer.decode(outputs[0]))
20
+
21
+
22
+
23
+
24
+
25
+
26
+ with gr.Blocks() as demo:
27
+ count = 0
28
+ aa = gr.Interface(
29
+ fn=chat,
30
+ inputs=["text","text","text"],
31
+ outputs="text",
32
+ description="chat, ai ์‘๋‹ต์„ ๋ฐ˜ํ™˜ํ•ฉ๋‹ˆ๋‹ค. ๋‚ด๋ถ€์ ์œผ๋กœ ํŠธ๋žœ์žญ์…˜ ์ƒ์„ฑ. \n /run/predict",
33
+ )
34
+
35
+
36
+ demo.queue(max_size=32).launch(enable_queue=True)