Spaces:
Running
on
Zero
Running
on
Zero
import functools | |
import os | |
import shutil | |
import sys | |
import git | |
import gradio as gr | |
import numpy as np | |
import torch as torch | |
from PIL import Image | |
from gradio_imageslider import ImageSlider | |
import spaces | |
import fire | |
REPO_URL = "https://github.com/lemonaddie/geowizard.git" | |
CHECKPOINT = "lemonaddie/Geowizard" | |
REPO_DIR = "geowizard" | |
if os.path.isdir(REPO_DIR): | |
shutil.rmtree(REPO_DIR) | |
repo = git.Repo.clone_from(REPO_URL, REPO_DIR) | |
sys.path.append(os.path.join(os.getcwd(), REPO_DIR)) | |
from pipeline.depth_normal_pipeline_clip_cfg import DepthNormalEstimationPipeline | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
pipe = DepthNormalEstimationPipeline.from_pretrained(CHECKPOINT) | |
try: | |
import xformers | |
pipe.enable_xformers_memory_efficient_attention() | |
except: | |
pass # run without xformers | |
pipe = pipe.to(device) | |
#run_demo_server(pipe) | |
def depth_normal(img, | |
denoising_steps, | |
ensemble_size, | |
processing_res, | |
guidance_scale, | |
domain): | |
#img = img.resize((processing_res, processing_res), Image.Resampling.LANCZOS) | |
pipe_out = pipe( | |
img, | |
denoising_steps=denoising_steps, | |
ensemble_size=ensemble_size, | |
processing_res=processing_res, | |
batch_size=0, | |
guidance_scale=guidance_scale, | |
domain=domain, | |
show_progress_bar=True, | |
) | |
depth_colored = pipe_out.depth_colored | |
normal_colored = pipe_out.normal_colored | |
return depth_colored, normal_colored | |
def run_demo(): | |
custom_theme = gr.themes.Soft(primary_hue="blue").set( | |
button_secondary_background_fill="*neutral_100", | |
button_secondary_background_fill_hover="*neutral_200") | |
custom_css = '''#disp_image { | |
text-align: center; /* Horizontally center the content */ | |
}''' | |
_TITLE = '''GeoWizard''' | |
_DESCRIPTION = ''' | |
<div> | |
Generate consistent depth and normal from single image. | |
<a style="display:inline-block; margin-left: .5em" href='https://github.com/uxiao0719/GeoWizard/'><img src='https://img.shields.io/github/stars/uxiao0719/GeoWizard?style=social' /></a> | |
</div> | |
''' | |
_GPU_ID = 0 | |
with gr.Blocks(title=_TITLE, theme=custom_theme, css=custom_css) as demo: | |
with gr.Row(): | |
with gr.Column(scale=1): | |
gr.Markdown('# ' + _TITLE) | |
gr.Markdown(_DESCRIPTION) | |
with gr.Row(variant='panel'): | |
with gr.Column(scale=1): | |
input_image = gr.Image(type='pil', image_mode='RGBA', height=320, label='Input image') | |
example_folder = os.path.join(os.path.dirname(__file__), "./files") | |
example_fns = [os.path.join(example_folder, example) for example in os.listdir(example_folder)] | |
gr.Examples( | |
examples=example_fns, | |
inputs=[input_image], | |
# outputs=[input_image], | |
cache_examples=False, | |
label='Examples (click one of the images below to start)', | |
examples_per_page=30 | |
) | |
with gr.Column(scale=1): | |
with gr.Accordion('Advanced options', open=True): | |
with gr.Column(): | |
domain = gr.Radio( | |
[ | |
("Outdoor", "outdoor"), | |
("Indoor", "indoor"), | |
("Object", "object"), | |
], | |
label="Data Domain", | |
value="indoor", | |
) | |
guidance_scale = gr.Slider( | |
label="Classifier Free Guidance Scale", | |
minimum=1, | |
maximum=5, | |
step=1, | |
value=3, | |
) | |
denoising_steps = gr.Slider( | |
label="Number of denoising steps", | |
minimum=1, | |
maximum=20, | |
step=1, | |
value=10, | |
) | |
ensemble_size = gr.Slider( | |
label="Ensemble size", | |
minimum=1, | |
maximum=15, | |
step=1, | |
value=1, | |
) | |
processing_res = gr.Radio( | |
[ | |
("Native", 0), | |
("Recommended", 768), | |
], | |
label="Processing resolution", | |
value=768, | |
) | |
run_btn = gr.Button('Generate', variant='primary', interactive=True) | |
with gr.Row(): | |
with gr.Column(): | |
depth = gr.Image(interactive=False, show_label=False) | |
with gr.Column(): | |
normal = gr.Image(interactive=False, show_label=False) | |
run_btn.click(fn=depth_normal, | |
inputs=[input_image, denoising_steps, | |
ensemble_size, | |
processing_res, | |
guidance_scale, | |
domain], | |
outputs=[depth, normal] | |
) | |
demo.queue().launch(share=True, max_threads=80) | |
if __name__ == '__main__': | |
fire.Fire(run_demo) | |