Spaces:
Running
on
Zero
Running
on
Zero
lemonaddie
commited on
Update app2.py
Browse files
app2.py
CHANGED
@@ -45,14 +45,12 @@ from torchvision.transforms import InterpolationMode
|
|
45 |
|
46 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
47 |
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
image_encoder = CLIPVisionModelWithProjection.from_pretrained(sd_image_variations_diffusers_path, subfolder="image_encoder")
|
53 |
-
feature_extractor = CLIPImageProcessor.from_pretrained(sd_image_variations_diffusers_path, subfolder="feature_extractor")
|
54 |
|
55 |
-
unet = UNet2DConditionModel.from_pretrained('./
|
56 |
|
57 |
pipe = DepthNormalEstimationPipeline(vae=vae,
|
58 |
image_encoder=image_encoder,
|
@@ -73,7 +71,6 @@ def depth_normal(img,
|
|
73 |
denoising_steps,
|
74 |
ensemble_size,
|
75 |
processing_res,
|
76 |
-
#guidance_scale,
|
77 |
seed,
|
78 |
domain):
|
79 |
|
@@ -86,7 +83,6 @@ def depth_normal(img,
|
|
86 |
ensemble_size=ensemble_size,
|
87 |
processing_res=processing_res,
|
88 |
batch_size=0,
|
89 |
-
#guidance_scale=guidance_scale,
|
90 |
domain=domain,
|
91 |
show_progress_bar=True,
|
92 |
)
|
@@ -131,7 +127,6 @@ def run_demo():
|
|
131 |
gr.Examples(
|
132 |
examples=example_fns,
|
133 |
inputs=[input_image],
|
134 |
-
# outputs=[input_image],
|
135 |
cache_examples=False,
|
136 |
label='Examples (click one of the images below to start)',
|
137 |
examples_per_page=30
|
@@ -162,7 +157,7 @@ def run_demo():
|
|
162 |
minimum=1,
|
163 |
maximum=15,
|
164 |
step=1,
|
165 |
-
value=
|
166 |
)
|
167 |
seed = gr.Number(42, label='Seed. May try different seed for better results.')
|
168 |
|
@@ -188,7 +183,6 @@ def run_demo():
|
|
188 |
inputs=[input_image, denoising_steps,
|
189 |
ensemble_size,
|
190 |
processing_res,
|
191 |
-
#guidance_scale,
|
192 |
seed,
|
193 |
domain],
|
194 |
outputs=[depth, normal]
|
|
|
45 |
|
46 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
47 |
|
48 |
+
vae = AutoencoderKL.from_pretrained('.', subfolder='vae')
|
49 |
+
scheduler = DDIMScheduler.from_pretrained('.', subfolder='scheduler')
|
50 |
+
image_encoder = CLIPVisionModelWithProjection.from_pretrained('.', subfolder="image_encoder")
|
51 |
+
feature_extractor = CLIPImageProcessor.from_pretrained('.', subfolder="feature_extractor")
|
|
|
|
|
52 |
|
53 |
+
unet = UNet2DConditionModel.from_pretrained('./unet')
|
54 |
|
55 |
pipe = DepthNormalEstimationPipeline(vae=vae,
|
56 |
image_encoder=image_encoder,
|
|
|
71 |
denoising_steps,
|
72 |
ensemble_size,
|
73 |
processing_res,
|
|
|
74 |
seed,
|
75 |
domain):
|
76 |
|
|
|
83 |
ensemble_size=ensemble_size,
|
84 |
processing_res=processing_res,
|
85 |
batch_size=0,
|
|
|
86 |
domain=domain,
|
87 |
show_progress_bar=True,
|
88 |
)
|
|
|
127 |
gr.Examples(
|
128 |
examples=example_fns,
|
129 |
inputs=[input_image],
|
|
|
130 |
cache_examples=False,
|
131 |
label='Examples (click one of the images below to start)',
|
132 |
examples_per_page=30
|
|
|
157 |
minimum=1,
|
158 |
maximum=15,
|
159 |
step=1,
|
160 |
+
value=4,
|
161 |
)
|
162 |
seed = gr.Number(42, label='Seed. May try different seed for better results.')
|
163 |
|
|
|
183 |
inputs=[input_image, denoising_steps,
|
184 |
ensemble_size,
|
185 |
processing_res,
|
|
|
186 |
seed,
|
187 |
domain],
|
188 |
outputs=[depth, normal]
|