lemonaddie commited on
Commit
2670857
·
verified ·
1 Parent(s): f621c8c

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +2 -7
app.py CHANGED
@@ -45,18 +45,13 @@ from torchvision.transforms import InterpolationMode
45
 
46
  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
47
 
48
- # vae = AutoencoderKL.from_pretrained('.', subfolder='vae')
49
- # scheduler = DDIMScheduler.from_pretrained('.', subfolder='scheduler')
50
- # image_encoder = CLIPVisionModelWithProjection.from_pretrained('.', subfolder="image_encoder")
51
- # feature_extractor = CLIPImageProcessor.from_pretrained('.', subfolder="feature_extractor")
52
-
53
  stable_diffusion_repo_path = "stabilityai/stable-diffusion-2-1-unclip"
54
  vae = AutoencoderKL.from_pretrained(stable_diffusion_repo_path, subfolder='vae')
55
  scheduler = DDIMScheduler.from_pretrained(stable_diffusion_repo_path, subfolder='scheduler')
56
  sd_image_variations_diffusers_path = 'lambdalabs/sd-image-variations-diffusers'
57
  image_encoder = CLIPVisionModelWithProjection.from_pretrained(sd_image_variations_diffusers_path, subfolder="image_encoder")
58
  feature_extractor = CLIPImageProcessor.from_pretrained(sd_image_variations_diffusers_path, subfolder="feature_extractor")
59
- unet = UNet2DConditionModel.from_pretrained('.', subfolder="unet7000")
60
 
61
  pipe = DepthNormalEstimationPipeline(vae=vae,
62
  image_encoder=image_encoder,
@@ -161,7 +156,7 @@ def run_demo():
161
  value=10,
162
  )
163
  ensemble_size = gr.Slider(
164
- label="Ensemble size (1 will be enough. More steps, higher accuracy)",
165
  minimum=1,
166
  maximum=15,
167
  step=1,
 
45
 
46
  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
47
 
 
 
 
 
 
48
  stable_diffusion_repo_path = "stabilityai/stable-diffusion-2-1-unclip"
49
  vae = AutoencoderKL.from_pretrained(stable_diffusion_repo_path, subfolder='vae')
50
  scheduler = DDIMScheduler.from_pretrained(stable_diffusion_repo_path, subfolder='scheduler')
51
  sd_image_variations_diffusers_path = 'lambdalabs/sd-image-variations-diffusers'
52
  image_encoder = CLIPVisionModelWithProjection.from_pretrained(sd_image_variations_diffusers_path, subfolder="image_encoder")
53
  feature_extractor = CLIPImageProcessor.from_pretrained(sd_image_variations_diffusers_path, subfolder="feature_extractor")
54
+ unet = UNet2DConditionModel.from_pretrained('.', subfolder="unet")
55
 
56
  pipe = DepthNormalEstimationPipeline(vae=vae,
57
  image_encoder=image_encoder,
 
156
  value=10,
157
  )
158
  ensemble_size = gr.Slider(
159
+ label="Ensemble size (4 will be enough. More steps, higher accuracy)",
160
  minimum=1,
161
  maximum=15,
162
  step=1,