Spaces:
Running
on
Zero
Running
on
Zero
lemonaddie
commited on
Update app2.py
Browse files
app2.py
CHANGED
@@ -30,7 +30,7 @@ import cv2
|
|
30 |
import sys
|
31 |
sys.path.append("../")
|
32 |
from models.depth_normal_pipeline_clip import DepthNormalEstimationPipeline
|
33 |
-
from models.depth_normal_pipeline_clip_cfg import DepthNormalEstimationPipeline
|
34 |
#from models.depth_normal_pipeline_clip_cfg1 import DepthNormalEstimationPipeline
|
35 |
from utils.seed_all import seed_all
|
36 |
import matplotlib.pyplot as plt
|
@@ -55,8 +55,8 @@ sd_image_variations_diffusers_path = '.'
|
|
55 |
image_encoder = CLIPVisionModelWithProjection.from_pretrained(sd_image_variations_diffusers_path, subfolder="image_encoder")
|
56 |
feature_extractor = CLIPImageProcessor.from_pretrained(sd_image_variations_diffusers_path, subfolder="feature_extractor")
|
57 |
|
58 |
-
|
59 |
-
unet = UNet2DConditionModel.from_pretrained('./cfg/unet_ema')
|
60 |
|
61 |
pipe = DepthNormalEstimationPipeline(vae=vae,
|
62 |
image_encoder=image_encoder,
|
@@ -78,7 +78,7 @@ def depth_normal(img,
|
|
78 |
denoising_steps,
|
79 |
ensemble_size,
|
80 |
processing_res,
|
81 |
-
guidance_scale,
|
82 |
domain):
|
83 |
|
84 |
#img = img.resize((processing_res, processing_res), Image.Resampling.LANCZOS)
|
@@ -88,7 +88,7 @@ def depth_normal(img,
|
|
88 |
ensemble_size=ensemble_size,
|
89 |
processing_res=processing_res,
|
90 |
batch_size=0,
|
91 |
-
guidance_scale=guidance_scale,
|
92 |
domain=domain,
|
93 |
show_progress_bar=True,
|
94 |
)
|
@@ -152,13 +152,13 @@ def run_demo():
|
|
152 |
label="Data Type (Must Select One matches your image)",
|
153 |
value="indoor",
|
154 |
)
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
)
|
162 |
denoising_steps = gr.Slider(
|
163 |
label="Number of denoising steps (More stepes, better quality)",
|
164 |
minimum=1,
|
@@ -195,7 +195,7 @@ def run_demo():
|
|
195 |
inputs=[input_image, denoising_steps,
|
196 |
ensemble_size,
|
197 |
processing_res,
|
198 |
-
guidance_scale,
|
199 |
domain],
|
200 |
outputs=[depth, normal]
|
201 |
)
|
|
|
30 |
import sys
|
31 |
sys.path.append("../")
|
32 |
from models.depth_normal_pipeline_clip import DepthNormalEstimationPipeline
|
33 |
+
#from models.depth_normal_pipeline_clip_cfg import DepthNormalEstimationPipeline
|
34 |
#from models.depth_normal_pipeline_clip_cfg1 import DepthNormalEstimationPipeline
|
35 |
from utils.seed_all import seed_all
|
36 |
import matplotlib.pyplot as plt
|
|
|
55 |
image_encoder = CLIPVisionModelWithProjection.from_pretrained(sd_image_variations_diffusers_path, subfolder="image_encoder")
|
56 |
feature_extractor = CLIPImageProcessor.from_pretrained(sd_image_variations_diffusers_path, subfolder="feature_extractor")
|
57 |
|
58 |
+
unet = UNet2DConditionModel.from_pretrained('./wocfg/unet_ema')
|
59 |
+
#unet = UNet2DConditionModel.from_pretrained('./cfg/unet_ema')
|
60 |
|
61 |
pipe = DepthNormalEstimationPipeline(vae=vae,
|
62 |
image_encoder=image_encoder,
|
|
|
78 |
denoising_steps,
|
79 |
ensemble_size,
|
80 |
processing_res,
|
81 |
+
#guidance_scale,
|
82 |
domain):
|
83 |
|
84 |
#img = img.resize((processing_res, processing_res), Image.Resampling.LANCZOS)
|
|
|
88 |
ensemble_size=ensemble_size,
|
89 |
processing_res=processing_res,
|
90 |
batch_size=0,
|
91 |
+
#guidance_scale=guidance_scale,
|
92 |
domain=domain,
|
93 |
show_progress_bar=True,
|
94 |
)
|
|
|
152 |
label="Data Type (Must Select One matches your image)",
|
153 |
value="indoor",
|
154 |
)
|
155 |
+
# guidance_scale = gr.Slider(
|
156 |
+
# label="Classifier Free Guidance Scale",
|
157 |
+
# minimum=1,
|
158 |
+
# maximum=5,
|
159 |
+
# step=1,
|
160 |
+
# value=1,
|
161 |
+
# )
|
162 |
denoising_steps = gr.Slider(
|
163 |
label="Number of denoising steps (More stepes, better quality)",
|
164 |
minimum=1,
|
|
|
195 |
inputs=[input_image, denoising_steps,
|
196 |
ensemble_size,
|
197 |
processing_res,
|
198 |
+
#guidance_scale,
|
199 |
domain],
|
200 |
outputs=[depth, normal]
|
201 |
)
|