Spaces:
Running
on
Zero
Running
on
Zero
lemonaddie
commited on
Update models/depth_normal_pipeline_clip.py
Browse files
models/depth_normal_pipeline_clip.py
CHANGED
@@ -79,7 +79,6 @@ class DepthNormalEstimationPipeline(DiffusionPipeline):
|
|
79 |
match_input_res:bool =True,
|
80 |
batch_size:int = 0,
|
81 |
domain: str = "indoor",
|
82 |
-
#seed: int = 0,
|
83 |
color_map: str="Spectral",
|
84 |
show_progress_bar:bool = True,
|
85 |
ensemble_kwargs: Dict = None,
|
@@ -148,7 +147,6 @@ class DepthNormalEstimationPipeline(DiffusionPipeline):
|
|
148 |
input_rgb=batched_image,
|
149 |
num_inference_steps=denoising_steps,
|
150 |
domain=domain,
|
151 |
-
#seed=seed,
|
152 |
show_pbar=show_progress_bar,
|
153 |
)
|
154 |
depth_pred_ls.append(depth_pred_raw.detach().clone())
|
@@ -232,7 +230,6 @@ class DepthNormalEstimationPipeline(DiffusionPipeline):
|
|
232 |
def single_infer(self,input_rgb:torch.Tensor,
|
233 |
num_inference_steps:int,
|
234 |
domain:str,
|
235 |
-
#seed: int,
|
236 |
show_pbar:bool,):
|
237 |
|
238 |
device = input_rgb.device
|
@@ -244,9 +241,7 @@ class DepthNormalEstimationPipeline(DiffusionPipeline):
|
|
244 |
# encode image
|
245 |
rgb_latent = self.encode_RGB(input_rgb)
|
246 |
|
247 |
-
# Initial
|
248 |
-
#if seed >= 0:
|
249 |
-
#torch.manual_seed(0)
|
250 |
geo_latent = torch.randn(rgb_latent.shape, device=device, dtype=self.dtype).repeat(2,1,1,1)
|
251 |
rgb_latent = rgb_latent.repeat(2,1,1,1)
|
252 |
|
@@ -258,7 +253,7 @@ class DepthNormalEstimationPipeline(DiffusionPipeline):
|
|
258 |
(rgb_latent.shape[0], 1, 1)
|
259 |
) # [B, 1, 768]
|
260 |
|
261 |
-
# hybrid
|
262 |
geo_class = torch.tensor([[0., 1.], [1, 0]], device=device, dtype=self.dtype)
|
263 |
geo_embedding = torch.cat([torch.sin(geo_class), torch.cos(geo_class)], dim=-1)
|
264 |
|
|
|
79 |
match_input_res:bool =True,
|
80 |
batch_size:int = 0,
|
81 |
domain: str = "indoor",
|
|
|
82 |
color_map: str="Spectral",
|
83 |
show_progress_bar:bool = True,
|
84 |
ensemble_kwargs: Dict = None,
|
|
|
147 |
input_rgb=batched_image,
|
148 |
num_inference_steps=denoising_steps,
|
149 |
domain=domain,
|
|
|
150 |
show_pbar=show_progress_bar,
|
151 |
)
|
152 |
depth_pred_ls.append(depth_pred_raw.detach().clone())
|
|
|
230 |
def single_infer(self,input_rgb:torch.Tensor,
|
231 |
num_inference_steps:int,
|
232 |
domain:str,
|
|
|
233 |
show_pbar:bool,):
|
234 |
|
235 |
device = input_rgb.device
|
|
|
241 |
# encode image
|
242 |
rgb_latent = self.encode_RGB(input_rgb)
|
243 |
|
244 |
+
# Initial geometric maps (Guassian noise)
|
|
|
|
|
245 |
geo_latent = torch.randn(rgb_latent.shape, device=device, dtype=self.dtype).repeat(2,1,1,1)
|
246 |
rgb_latent = rgb_latent.repeat(2,1,1,1)
|
247 |
|
|
|
253 |
(rgb_latent.shape[0], 1, 1)
|
254 |
) # [B, 1, 768]
|
255 |
|
256 |
+
# hybrid switcher
|
257 |
geo_class = torch.tensor([[0., 1.], [1, 0]], device=device, dtype=self.dtype)
|
258 |
geo_embedding = torch.cat([torch.sin(geo_class), torch.cos(geo_class)], dim=-1)
|
259 |
|