lemonaddie commited on
Commit
87f795e
·
verified ·
1 Parent(s): 9582ec0

Upload 9 files

Browse files
models/attention.py ADDED
@@ -0,0 +1,777 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2023 The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+
16
+ # Some modifications are reimplemented in public environments by Xiao Fu and Mu Hu
17
+
18
+
19
+ from typing import Any, Dict, Optional
20
+
21
+ import torch
22
+ import torch.nn.functional as F
23
+ from torch import nn
24
+ import xformers
25
+
26
+ from diffusers.utils import USE_PEFT_BACKEND
27
+ from diffusers.utils.torch_utils import maybe_allow_in_graph
28
+ from diffusers.models.activations import GEGLU, GELU, ApproximateGELU
29
+ from diffusers.models.attention_processor import Attention
30
+ from diffusers.models.embeddings import SinusoidalPositionalEmbedding
31
+ from diffusers.models.lora import LoRACompatibleLinear
32
+ from diffusers.models.normalization import AdaLayerNorm, AdaLayerNormContinuous, AdaLayerNormZero, RMSNorm
33
+
34
+
35
+ def _chunked_feed_forward(
36
+ ff: nn.Module, hidden_states: torch.Tensor, chunk_dim: int, chunk_size: int, lora_scale: Optional[float] = None
37
+ ):
38
+ # "feed_forward_chunk_size" can be used to save memory
39
+ if hidden_states.shape[chunk_dim] % chunk_size != 0:
40
+ raise ValueError(
41
+ f"`hidden_states` dimension to be chunked: {hidden_states.shape[chunk_dim]} has to be divisible by chunk size: {chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`."
42
+ )
43
+
44
+ num_chunks = hidden_states.shape[chunk_dim] // chunk_size
45
+ if lora_scale is None:
46
+ ff_output = torch.cat(
47
+ [ff(hid_slice) for hid_slice in hidden_states.chunk(num_chunks, dim=chunk_dim)],
48
+ dim=chunk_dim,
49
+ )
50
+ else:
51
+ # TOOD(Patrick): LoRA scale can be removed once PEFT refactor is complete
52
+ ff_output = torch.cat(
53
+ [ff(hid_slice, scale=lora_scale) for hid_slice in hidden_states.chunk(num_chunks, dim=chunk_dim)],
54
+ dim=chunk_dim,
55
+ )
56
+
57
+ return ff_output
58
+
59
+
60
+ @maybe_allow_in_graph
61
+ class GatedSelfAttentionDense(nn.Module):
62
+ r"""
63
+ A gated self-attention dense layer that combines visual features and object features.
64
+
65
+ Parameters:
66
+ query_dim (`int`): The number of channels in the query.
67
+ context_dim (`int`): The number of channels in the context.
68
+ n_heads (`int`): The number of heads to use for attention.
69
+ d_head (`int`): The number of channels in each head.
70
+ """
71
+
72
+ def __init__(self, query_dim: int, context_dim: int, n_heads: int, d_head: int):
73
+ super().__init__()
74
+
75
+ # we need a linear projection since we need cat visual feature and obj feature
76
+ self.linear = nn.Linear(context_dim, query_dim)
77
+
78
+ self.attn = Attention(query_dim=query_dim, heads=n_heads, dim_head=d_head)
79
+ self.ff = FeedForward(query_dim, activation_fn="geglu")
80
+
81
+ self.norm1 = nn.LayerNorm(query_dim)
82
+ self.norm2 = nn.LayerNorm(query_dim)
83
+
84
+ self.register_parameter("alpha_attn", nn.Parameter(torch.tensor(0.0)))
85
+ self.register_parameter("alpha_dense", nn.Parameter(torch.tensor(0.0)))
86
+
87
+ self.enabled = True
88
+
89
+ def forward(self, x: torch.Tensor, objs: torch.Tensor) -> torch.Tensor:
90
+ if not self.enabled:
91
+ return x
92
+
93
+ n_visual = x.shape[1]
94
+ objs = self.linear(objs)
95
+
96
+ x = x + self.alpha_attn.tanh() * self.attn(self.norm1(torch.cat([x, objs], dim=1)))[:, :n_visual, :]
97
+ x = x + self.alpha_dense.tanh() * self.ff(self.norm2(x))
98
+
99
+ return x
100
+
101
+
102
+ @maybe_allow_in_graph
103
+ class BasicTransformerBlock(nn.Module):
104
+ r"""
105
+ A basic Transformer block.
106
+
107
+ Parameters:
108
+ dim (`int`): The number of channels in the input and output.
109
+ num_attention_heads (`int`): The number of heads to use for multi-head attention.
110
+ attention_head_dim (`int`): The number of channels in each head.
111
+ dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
112
+ cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention.
113
+ activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
114
+ num_embeds_ada_norm (:
115
+ obj: `int`, *optional*): The number of diffusion steps used during training. See `Transformer2DModel`.
116
+ attention_bias (:
117
+ obj: `bool`, *optional*, defaults to `False`): Configure if the attentions should contain a bias parameter.
118
+ only_cross_attention (`bool`, *optional*):
119
+ Whether to use only cross-attention layers. In this case two cross attention layers are used.
120
+ double_self_attention (`bool`, *optional*):
121
+ Whether to use two self-attention layers. In this case no cross attention layers are used.
122
+ upcast_attention (`bool`, *optional*):
123
+ Whether to upcast the attention computation to float32. This is useful for mixed precision training.
124
+ norm_elementwise_affine (`bool`, *optional*, defaults to `True`):
125
+ Whether to use learnable elementwise affine parameters for normalization.
126
+ norm_type (`str`, *optional*, defaults to `"layer_norm"`):
127
+ The normalization layer to use. Can be `"layer_norm"`, `"ada_norm"` or `"ada_norm_zero"`.
128
+ final_dropout (`bool` *optional*, defaults to False):
129
+ Whether to apply a final dropout after the last feed-forward layer.
130
+ attention_type (`str`, *optional*, defaults to `"default"`):
131
+ The type of attention to use. Can be `"default"` or `"gated"` or `"gated-text-image"`.
132
+ positional_embeddings (`str`, *optional*, defaults to `None`):
133
+ The type of positional embeddings to apply to.
134
+ num_positional_embeddings (`int`, *optional*, defaults to `None`):
135
+ The maximum number of positional embeddings to apply.
136
+ """
137
+
138
+ def __init__(
139
+ self,
140
+ dim: int,
141
+ num_attention_heads: int,
142
+ attention_head_dim: int,
143
+ dropout=0.0,
144
+ cross_attention_dim: Optional[int] = None,
145
+ activation_fn: str = "geglu",
146
+ num_embeds_ada_norm: Optional[int] = None,
147
+ attention_bias: bool = False,
148
+ only_cross_attention: bool = False,
149
+ double_self_attention: bool = False,
150
+ upcast_attention: bool = False,
151
+ norm_elementwise_affine: bool = True,
152
+ norm_type: str = "layer_norm", # 'layer_norm', 'ada_norm', 'ada_norm_zero', 'ada_norm_single'
153
+ norm_eps: float = 1e-5,
154
+ final_dropout: bool = False,
155
+ attention_type: str = "default",
156
+ positional_embeddings: Optional[str] = None,
157
+ num_positional_embeddings: Optional[int] = None,
158
+ ada_norm_continous_conditioning_embedding_dim: Optional[int] = None,
159
+ ada_norm_bias: Optional[int] = None,
160
+ ff_inner_dim: Optional[int] = None,
161
+ ff_bias: bool = True,
162
+ attention_out_bias: bool = True,
163
+ ):
164
+ super().__init__()
165
+ self.only_cross_attention = only_cross_attention
166
+
167
+ self.use_ada_layer_norm_zero = (num_embeds_ada_norm is not None) and norm_type == "ada_norm_zero"
168
+ self.use_ada_layer_norm = (num_embeds_ada_norm is not None) and norm_type == "ada_norm"
169
+ self.use_ada_layer_norm_single = norm_type == "ada_norm_single"
170
+ self.use_layer_norm = norm_type == "layer_norm"
171
+ self.use_ada_layer_norm_continuous = norm_type == "ada_norm_continuous"
172
+
173
+ if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None:
174
+ raise ValueError(
175
+ f"`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to"
176
+ f" define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}."
177
+ )
178
+
179
+ if positional_embeddings and (num_positional_embeddings is None):
180
+ raise ValueError(
181
+ "If `positional_embedding` type is defined, `num_positition_embeddings` must also be defined."
182
+ )
183
+
184
+ if positional_embeddings == "sinusoidal":
185
+ self.pos_embed = SinusoidalPositionalEmbedding(dim, max_seq_length=num_positional_embeddings)
186
+ else:
187
+ self.pos_embed = None
188
+
189
+ # Define 3 blocks. Each block has its own normalization layer.
190
+ # 1. Self-Attn
191
+ if self.use_ada_layer_norm:
192
+ self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm)
193
+ elif self.use_ada_layer_norm_zero:
194
+ self.norm1 = AdaLayerNormZero(dim, num_embeds_ada_norm)
195
+ elif self.use_ada_layer_norm_continuous:
196
+ self.norm1 = AdaLayerNormContinuous(
197
+ dim,
198
+ ada_norm_continous_conditioning_embedding_dim,
199
+ norm_elementwise_affine,
200
+ norm_eps,
201
+ ada_norm_bias,
202
+ "rms_norm",
203
+ )
204
+ else:
205
+ self.norm1 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps)
206
+
207
+
208
+ self.attn1 = CustomJointAttention(
209
+ query_dim=dim,
210
+ heads=num_attention_heads,
211
+ dim_head=attention_head_dim,
212
+ dropout=dropout,
213
+ bias=attention_bias,
214
+ cross_attention_dim=cross_attention_dim if only_cross_attention else None,
215
+ upcast_attention=upcast_attention,
216
+ out_bias=attention_out_bias
217
+ )
218
+
219
+ # 2. Cross-Attn
220
+ if cross_attention_dim is not None or double_self_attention:
221
+ # We currently only use AdaLayerNormZero for self attention where there will only be one attention block.
222
+ # I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during
223
+ # the second cross attention block.
224
+
225
+ if self.use_ada_layer_norm:
226
+ self.norm2 = AdaLayerNorm(dim, num_embeds_ada_norm)
227
+ elif self.use_ada_layer_norm_continuous:
228
+ self.norm2 = AdaLayerNormContinuous(
229
+ dim,
230
+ ada_norm_continous_conditioning_embedding_dim,
231
+ norm_elementwise_affine,
232
+ norm_eps,
233
+ ada_norm_bias,
234
+ "rms_norm",
235
+ )
236
+ else:
237
+ self.norm2 = nn.LayerNorm(dim, norm_eps, norm_elementwise_affine)
238
+
239
+ self.attn2 = Attention(
240
+ query_dim=dim,
241
+ cross_attention_dim=cross_attention_dim if not double_self_attention else None,
242
+ heads=num_attention_heads,
243
+ dim_head=attention_head_dim,
244
+ dropout=dropout,
245
+ bias=attention_bias,
246
+ upcast_attention=upcast_attention,
247
+ out_bias=attention_out_bias,
248
+ ) # is self-attn if encoder_hidden_states is none
249
+ else:
250
+ self.norm2 = None
251
+ self.attn2 = None
252
+
253
+ # 3. Feed-forward
254
+ if self.use_ada_layer_norm_continuous:
255
+ self.norm3 = AdaLayerNormContinuous(
256
+ dim,
257
+ ada_norm_continous_conditioning_embedding_dim,
258
+ norm_elementwise_affine,
259
+ norm_eps,
260
+ ada_norm_bias,
261
+ "layer_norm",
262
+ )
263
+ elif not self.use_ada_layer_norm_single:
264
+ self.norm3 = nn.LayerNorm(dim, norm_eps, norm_elementwise_affine)
265
+
266
+ self.ff = FeedForward(
267
+ dim,
268
+ dropout=dropout,
269
+ activation_fn=activation_fn,
270
+ final_dropout=final_dropout,
271
+ inner_dim=ff_inner_dim,
272
+ bias=ff_bias,
273
+ )
274
+
275
+ # 4. Fuser
276
+ if attention_type == "gated" or attention_type == "gated-text-image":
277
+ self.fuser = GatedSelfAttentionDense(dim, cross_attention_dim, num_attention_heads, attention_head_dim)
278
+
279
+ # 5. Scale-shift for PixArt-Alpha.
280
+ if self.use_ada_layer_norm_single:
281
+ self.scale_shift_table = nn.Parameter(torch.randn(6, dim) / dim**0.5)
282
+
283
+ # let chunk size default to None
284
+ self._chunk_size = None
285
+ self._chunk_dim = 0
286
+
287
+ def set_chunk_feed_forward(self, chunk_size: Optional[int], dim: int = 0):
288
+ # Sets chunk feed-forward
289
+ self._chunk_size = chunk_size
290
+ self._chunk_dim = dim
291
+
292
+ def forward(
293
+ self,
294
+ hidden_states: torch.FloatTensor,
295
+ attention_mask: Optional[torch.FloatTensor] = None,
296
+ encoder_hidden_states: Optional[torch.FloatTensor] = None,
297
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
298
+ timestep: Optional[torch.LongTensor] = None,
299
+ cross_attention_kwargs: Dict[str, Any] = None,
300
+ class_labels: Optional[torch.LongTensor] = None,
301
+ added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
302
+ ) -> torch.FloatTensor:
303
+ # Notice that normalization is always applied before the real computation in the following blocks.
304
+
305
+ # 0. Self-Attention
306
+ batch_size = hidden_states.shape[0]
307
+
308
+ if self.use_ada_layer_norm:
309
+ norm_hidden_states = self.norm1(hidden_states, timestep)
310
+ elif self.use_ada_layer_norm_zero:
311
+ norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(
312
+ hidden_states, timestep, class_labels, hidden_dtype=hidden_states.dtype
313
+ )
314
+ elif self.use_layer_norm:
315
+ norm_hidden_states = self.norm1(hidden_states)
316
+ elif self.use_ada_layer_norm_continuous:
317
+ norm_hidden_states = self.norm1(hidden_states, added_cond_kwargs["pooled_text_emb"])
318
+ elif self.use_ada_layer_norm_single:
319
+ shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = (
320
+ self.scale_shift_table[None] + timestep.reshape(batch_size, 6, -1)
321
+ ).chunk(6, dim=1)
322
+ norm_hidden_states = self.norm1(hidden_states)
323
+ norm_hidden_states = norm_hidden_states * (1 + scale_msa) + shift_msa
324
+ norm_hidden_states = norm_hidden_states.squeeze(1)
325
+ else:
326
+ raise ValueError("Incorrect norm used")
327
+
328
+ if self.pos_embed is not None:
329
+ norm_hidden_states = self.pos_embed(norm_hidden_states)
330
+
331
+ # 1. Retrieve lora scale.
332
+ lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0
333
+
334
+ # 2. Prepare GLIGEN inputs
335
+ cross_attention_kwargs = cross_attention_kwargs.copy() if cross_attention_kwargs is not None else {}
336
+ gligen_kwargs = cross_attention_kwargs.pop("gligen", None)
337
+
338
+ attn_output = self.attn1(
339
+ norm_hidden_states,
340
+ encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None,
341
+ attention_mask=attention_mask,
342
+ **cross_attention_kwargs,
343
+ )
344
+ if self.use_ada_layer_norm_zero:
345
+ attn_output = gate_msa.unsqueeze(1) * attn_output
346
+ elif self.use_ada_layer_norm_single:
347
+ attn_output = gate_msa * attn_output
348
+
349
+ hidden_states = attn_output + hidden_states
350
+ if hidden_states.ndim == 4:
351
+ hidden_states = hidden_states.squeeze(1)
352
+
353
+ # 2.5 GLIGEN Control
354
+ if gligen_kwargs is not None:
355
+ hidden_states = self.fuser(hidden_states, gligen_kwargs["objs"])
356
+
357
+ # 3. Cross-Attention
358
+ if self.attn2 is not None:
359
+ if self.use_ada_layer_norm:
360
+ norm_hidden_states = self.norm2(hidden_states, timestep)
361
+ elif self.use_ada_layer_norm_zero or self.use_layer_norm:
362
+ norm_hidden_states = self.norm2(hidden_states)
363
+ elif self.use_ada_layer_norm_single:
364
+ # For PixArt norm2 isn't applied here:
365
+ # https://github.com/PixArt-alpha/PixArt-alpha/blob/0f55e922376d8b797edd44d25d0e7464b260dcab/diffusion/model/nets/PixArtMS.py#L70C1-L76C103
366
+ norm_hidden_states = hidden_states
367
+ elif self.use_ada_layer_norm_continuous:
368
+ norm_hidden_states = self.norm2(hidden_states, added_cond_kwargs["pooled_text_emb"])
369
+ else:
370
+ raise ValueError("Incorrect norm")
371
+
372
+ if self.pos_embed is not None and self.use_ada_layer_norm_single is False:
373
+ norm_hidden_states = self.pos_embed(norm_hidden_states)
374
+
375
+ attn_output = self.attn2(
376
+ norm_hidden_states,
377
+ encoder_hidden_states=encoder_hidden_states,
378
+ attention_mask=encoder_attention_mask,
379
+ **cross_attention_kwargs,
380
+ )
381
+ hidden_states = attn_output + hidden_states
382
+
383
+ # 4. Feed-forward
384
+ if self.use_ada_layer_norm_continuous:
385
+ norm_hidden_states = self.norm3(hidden_states, added_cond_kwargs["pooled_text_emb"])
386
+ elif not self.use_ada_layer_norm_single:
387
+ norm_hidden_states = self.norm3(hidden_states)
388
+
389
+ if self.use_ada_layer_norm_zero:
390
+ norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
391
+
392
+ if self.use_ada_layer_norm_single:
393
+ norm_hidden_states = self.norm2(hidden_states)
394
+ norm_hidden_states = norm_hidden_states * (1 + scale_mlp) + shift_mlp
395
+
396
+ if self._chunk_size is not None:
397
+ # "feed_forward_chunk_size" can be used to save memory
398
+ ff_output = _chunked_feed_forward(
399
+ self.ff, norm_hidden_states, self._chunk_dim, self._chunk_size, lora_scale=lora_scale
400
+ )
401
+ else:
402
+ ff_output = self.ff(norm_hidden_states, scale=lora_scale)
403
+
404
+ if self.use_ada_layer_norm_zero:
405
+ ff_output = gate_mlp.unsqueeze(1) * ff_output
406
+ elif self.use_ada_layer_norm_single:
407
+ ff_output = gate_mlp * ff_output
408
+
409
+ hidden_states = ff_output + hidden_states
410
+ if hidden_states.ndim == 4:
411
+ hidden_states = hidden_states.squeeze(1)
412
+
413
+ return hidden_states
414
+
415
+
416
+ class CustomJointAttention(Attention):
417
+ def set_use_memory_efficient_attention_xformers(
418
+ self, use_memory_efficient_attention_xformers: bool, *args, **kwargs
419
+ ):
420
+ processor = XFormersJointAttnProcessor()
421
+ self.set_processor(processor)
422
+ # print("using xformers attention processor")
423
+
424
+
425
+ class XFormersJointAttnProcessor:
426
+ r"""
427
+ Default processor for performing attention-related computations.
428
+ """
429
+
430
+ def __call__(
431
+ self,
432
+ attn: Attention,
433
+ hidden_states,
434
+ encoder_hidden_states=None,
435
+ attention_mask=None,
436
+ temb=None,
437
+ num_tasks=2
438
+ ):
439
+
440
+ residual = hidden_states
441
+
442
+ if attn.spatial_norm is not None:
443
+ hidden_states = attn.spatial_norm(hidden_states, temb)
444
+
445
+ input_ndim = hidden_states.ndim
446
+
447
+ if input_ndim == 4:
448
+ batch_size, channel, height, width = hidden_states.shape
449
+ hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
450
+
451
+ batch_size, sequence_length, _ = (
452
+ hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
453
+ )
454
+ attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
455
+
456
+ # from yuancheng; here attention_mask is None
457
+ if attention_mask is not None:
458
+ # expand our mask's singleton query_tokens dimension:
459
+ # [batch*heads, 1, key_tokens] ->
460
+ # [batch*heads, query_tokens, key_tokens]
461
+ # so that it can be added as a bias onto the attention scores that xformers computes:
462
+ # [batch*heads, query_tokens, key_tokens]
463
+ # we do this explicitly because xformers doesn't broadcast the singleton dimension for us.
464
+ _, query_tokens, _ = hidden_states.shape
465
+ attention_mask = attention_mask.expand(-1, query_tokens, -1)
466
+
467
+ if attn.group_norm is not None:
468
+ hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
469
+
470
+ query = attn.to_q(hidden_states)
471
+
472
+ if encoder_hidden_states is None:
473
+ encoder_hidden_states = hidden_states
474
+ elif attn.norm_cross:
475
+ encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
476
+
477
+ key = attn.to_k(encoder_hidden_states)
478
+ value = attn.to_v(encoder_hidden_states)
479
+
480
+ assert num_tasks == 2 # only support two tasks now
481
+
482
+ key_0, key_1 = torch.chunk(key, dim=0, chunks=2) # keys shape (b t) d c
483
+ value_0, value_1 = torch.chunk(value, dim=0, chunks=2)
484
+
485
+ # key = torch.cat([key_1, key_0], dim=0)
486
+ # value = torch.cat([value_1, value_0], dim=0)
487
+
488
+ key = torch.cat([key_0, key_1], dim=1) # (b t) 2d c
489
+ value = torch.cat([value_0, value_1], dim=1) # (b t) 2d c
490
+ key = torch.cat([key]*2, dim=0) # (2 b t) 2d c
491
+ value = torch.cat([value]*2, dim=0) # (2 b t) 2d c
492
+
493
+ query = attn.head_to_batch_dim(query).contiguous()
494
+ key = attn.head_to_batch_dim(key).contiguous()
495
+ value = attn.head_to_batch_dim(value).contiguous()
496
+
497
+ hidden_states = xformers.ops.memory_efficient_attention(query, key, value, attn_bias=attention_mask)
498
+ hidden_states = attn.batch_to_head_dim(hidden_states)
499
+
500
+ # linear proj
501
+ hidden_states = attn.to_out[0](hidden_states)
502
+ # dropout
503
+ hidden_states = attn.to_out[1](hidden_states)
504
+
505
+ if input_ndim == 4:
506
+ hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
507
+
508
+ if attn.residual_connection:
509
+ hidden_states = hidden_states + residual
510
+
511
+ hidden_states = hidden_states / attn.rescale_output_factor
512
+
513
+ return hidden_states
514
+
515
+
516
+ @maybe_allow_in_graph
517
+ class TemporalBasicTransformerBlock(nn.Module):
518
+ r"""
519
+ A basic Transformer block for video like data.
520
+
521
+ Parameters:
522
+ dim (`int`): The number of channels in the input and output.
523
+ time_mix_inner_dim (`int`): The number of channels for temporal attention.
524
+ num_attention_heads (`int`): The number of heads to use for multi-head attention.
525
+ attention_head_dim (`int`): The number of channels in each head.
526
+ cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention.
527
+ """
528
+
529
+ def __init__(
530
+ self,
531
+ dim: int,
532
+ time_mix_inner_dim: int,
533
+ num_attention_heads: int,
534
+ attention_head_dim: int,
535
+ cross_attention_dim: Optional[int] = None,
536
+ ):
537
+ super().__init__()
538
+ self.is_res = dim == time_mix_inner_dim
539
+
540
+ self.norm_in = nn.LayerNorm(dim)
541
+
542
+ # Define 3 blocks. Each block has its own normalization layer.
543
+ # 1. Self-Attn
544
+ self.norm_in = nn.LayerNorm(dim)
545
+ self.ff_in = FeedForward(
546
+ dim,
547
+ dim_out=time_mix_inner_dim,
548
+ activation_fn="geglu",
549
+ )
550
+
551
+ self.norm1 = nn.LayerNorm(time_mix_inner_dim)
552
+ self.attn1 = Attention(
553
+ query_dim=time_mix_inner_dim,
554
+ heads=num_attention_heads,
555
+ dim_head=attention_head_dim,
556
+ cross_attention_dim=None,
557
+ )
558
+
559
+ # 2. Cross-Attn
560
+ if cross_attention_dim is not None:
561
+ # We currently only use AdaLayerNormZero for self attention where there will only be one attention block.
562
+ # I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during
563
+ # the second cross attention block.
564
+ self.norm2 = nn.LayerNorm(time_mix_inner_dim)
565
+ self.attn2 = Attention(
566
+ query_dim=time_mix_inner_dim,
567
+ cross_attention_dim=cross_attention_dim,
568
+ heads=num_attention_heads,
569
+ dim_head=attention_head_dim,
570
+ ) # is self-attn if encoder_hidden_states is none
571
+ else:
572
+ self.norm2 = None
573
+ self.attn2 = None
574
+
575
+ # 3. Feed-forward
576
+ self.norm3 = nn.LayerNorm(time_mix_inner_dim)
577
+ self.ff = FeedForward(time_mix_inner_dim, activation_fn="geglu")
578
+
579
+ # let chunk size default to None
580
+ self._chunk_size = None
581
+ self._chunk_dim = None
582
+
583
+ def set_chunk_feed_forward(self, chunk_size: Optional[int], **kwargs):
584
+ # Sets chunk feed-forward
585
+ self._chunk_size = chunk_size
586
+ # chunk dim should be hardcoded to 1 to have better speed vs. memory trade-off
587
+ self._chunk_dim = 1
588
+
589
+ def forward(
590
+ self,
591
+ hidden_states: torch.FloatTensor,
592
+ num_frames: int,
593
+ encoder_hidden_states: Optional[torch.FloatTensor] = None,
594
+ ) -> torch.FloatTensor:
595
+ # Notice that normalization is always applied before the real computation in the following blocks.
596
+ # 0. Self-Attention
597
+ batch_size = hidden_states.shape[0]
598
+
599
+ batch_frames, seq_length, channels = hidden_states.shape
600
+ batch_size = batch_frames // num_frames
601
+
602
+ hidden_states = hidden_states[None, :].reshape(batch_size, num_frames, seq_length, channels)
603
+ hidden_states = hidden_states.permute(0, 2, 1, 3)
604
+ hidden_states = hidden_states.reshape(batch_size * seq_length, num_frames, channels)
605
+
606
+ residual = hidden_states
607
+ hidden_states = self.norm_in(hidden_states)
608
+
609
+ if self._chunk_size is not None:
610
+ hidden_states = _chunked_feed_forward(self.ff_in, hidden_states, self._chunk_dim, self._chunk_size)
611
+ else:
612
+ hidden_states = self.ff_in(hidden_states)
613
+
614
+ if self.is_res:
615
+ hidden_states = hidden_states + residual
616
+
617
+ norm_hidden_states = self.norm1(hidden_states)
618
+ attn_output = self.attn1(norm_hidden_states, encoder_hidden_states=None)
619
+ hidden_states = attn_output + hidden_states
620
+
621
+ # 3. Cross-Attention
622
+ if self.attn2 is not None:
623
+ norm_hidden_states = self.norm2(hidden_states)
624
+ attn_output = self.attn2(norm_hidden_states, encoder_hidden_states=encoder_hidden_states)
625
+ hidden_states = attn_output + hidden_states
626
+
627
+ # 4. Feed-forward
628
+ norm_hidden_states = self.norm3(hidden_states)
629
+
630
+ if self._chunk_size is not None:
631
+ ff_output = _chunked_feed_forward(self.ff, norm_hidden_states, self._chunk_dim, self._chunk_size)
632
+ else:
633
+ ff_output = self.ff(norm_hidden_states)
634
+
635
+ if self.is_res:
636
+ hidden_states = ff_output + hidden_states
637
+ else:
638
+ hidden_states = ff_output
639
+
640
+ hidden_states = hidden_states[None, :].reshape(batch_size, seq_length, num_frames, channels)
641
+ hidden_states = hidden_states.permute(0, 2, 1, 3)
642
+ hidden_states = hidden_states.reshape(batch_size * num_frames, seq_length, channels)
643
+
644
+ return hidden_states
645
+
646
+
647
+ class SkipFFTransformerBlock(nn.Module):
648
+ def __init__(
649
+ self,
650
+ dim: int,
651
+ num_attention_heads: int,
652
+ attention_head_dim: int,
653
+ kv_input_dim: int,
654
+ kv_input_dim_proj_use_bias: bool,
655
+ dropout=0.0,
656
+ cross_attention_dim: Optional[int] = None,
657
+ attention_bias: bool = False,
658
+ attention_out_bias: bool = True,
659
+ ):
660
+ super().__init__()
661
+ if kv_input_dim != dim:
662
+ self.kv_mapper = nn.Linear(kv_input_dim, dim, kv_input_dim_proj_use_bias)
663
+ else:
664
+ self.kv_mapper = None
665
+
666
+ self.norm1 = RMSNorm(dim, 1e-06)
667
+
668
+ self.attn1 = Attention(
669
+ query_dim=dim,
670
+ heads=num_attention_heads,
671
+ dim_head=attention_head_dim,
672
+ dropout=dropout,
673
+ bias=attention_bias,
674
+ cross_attention_dim=cross_attention_dim,
675
+ out_bias=attention_out_bias,
676
+ )
677
+
678
+ self.norm2 = RMSNorm(dim, 1e-06)
679
+
680
+ self.attn2 = Attention(
681
+ query_dim=dim,
682
+ cross_attention_dim=cross_attention_dim,
683
+ heads=num_attention_heads,
684
+ dim_head=attention_head_dim,
685
+ dropout=dropout,
686
+ bias=attention_bias,
687
+ out_bias=attention_out_bias,
688
+ )
689
+
690
+ def forward(self, hidden_states, encoder_hidden_states, cross_attention_kwargs):
691
+ cross_attention_kwargs = cross_attention_kwargs.copy() if cross_attention_kwargs is not None else {}
692
+
693
+ if self.kv_mapper is not None:
694
+ encoder_hidden_states = self.kv_mapper(F.silu(encoder_hidden_states))
695
+
696
+ norm_hidden_states = self.norm1(hidden_states)
697
+
698
+ attn_output = self.attn1(
699
+ norm_hidden_states,
700
+ encoder_hidden_states=encoder_hidden_states,
701
+ **cross_attention_kwargs,
702
+ )
703
+
704
+ hidden_states = attn_output + hidden_states
705
+
706
+ norm_hidden_states = self.norm2(hidden_states)
707
+
708
+ attn_output = self.attn2(
709
+ norm_hidden_states,
710
+ encoder_hidden_states=encoder_hidden_states,
711
+ **cross_attention_kwargs,
712
+ )
713
+
714
+ hidden_states = attn_output + hidden_states
715
+
716
+ return hidden_states
717
+
718
+
719
+ class FeedForward(nn.Module):
720
+ r"""
721
+ A feed-forward layer.
722
+
723
+ Parameters:
724
+ dim (`int`): The number of channels in the input.
725
+ dim_out (`int`, *optional*): The number of channels in the output. If not given, defaults to `dim`.
726
+ mult (`int`, *optional*, defaults to 4): The multiplier to use for the hidden dimension.
727
+ dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
728
+ activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
729
+ final_dropout (`bool` *optional*, defaults to False): Apply a final dropout.
730
+ bias (`bool`, defaults to True): Whether to use a bias in the linear layer.
731
+ """
732
+
733
+ def __init__(
734
+ self,
735
+ dim: int,
736
+ dim_out: Optional[int] = None,
737
+ mult: int = 4,
738
+ dropout: float = 0.0,
739
+ activation_fn: str = "geglu",
740
+ final_dropout: bool = False,
741
+ inner_dim=None,
742
+ bias: bool = True,
743
+ ):
744
+ super().__init__()
745
+ if inner_dim is None:
746
+ inner_dim = int(dim * mult)
747
+ dim_out = dim_out if dim_out is not None else dim
748
+ linear_cls = LoRACompatibleLinear if not USE_PEFT_BACKEND else nn.Linear
749
+
750
+ if activation_fn == "gelu":
751
+ act_fn = GELU(dim, inner_dim, bias=bias)
752
+ if activation_fn == "gelu-approximate":
753
+ act_fn = GELU(dim, inner_dim, approximate="tanh", bias=bias)
754
+ elif activation_fn == "geglu":
755
+ act_fn = GEGLU(dim, inner_dim, bias=bias)
756
+ elif activation_fn == "geglu-approximate":
757
+ act_fn = ApproximateGELU(dim, inner_dim, bias=bias)
758
+
759
+ self.net = nn.ModuleList([])
760
+ # project in
761
+ self.net.append(act_fn)
762
+ # project dropout
763
+ self.net.append(nn.Dropout(dropout))
764
+ # project out
765
+ self.net.append(linear_cls(inner_dim, dim_out, bias=bias))
766
+ # FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout
767
+ if final_dropout:
768
+ self.net.append(nn.Dropout(dropout))
769
+
770
+ def forward(self, hidden_states: torch.Tensor, scale: float = 1.0) -> torch.Tensor:
771
+ compatible_cls = (GEGLU,) if USE_PEFT_BACKEND else (GEGLU, LoRACompatibleLinear)
772
+ for module in self.net:
773
+ if isinstance(module, compatible_cls):
774
+ hidden_states = module(hidden_states, scale)
775
+ else:
776
+ hidden_states = module(hidden_states)
777
+ return hidden_states
models/depth_normal_pipeline.py ADDED
@@ -0,0 +1,361 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # A reimplemented version in public environments by Xiao Fu and Mu Hu
2
+
3
+ from typing import Any, Dict, Union
4
+
5
+ import torch
6
+ from torch.utils.data import DataLoader, TensorDataset
7
+ import numpy as np
8
+ from tqdm.auto import tqdm
9
+ from PIL import Image
10
+ from diffusers import (
11
+ DiffusionPipeline,
12
+ DDIMScheduler,
13
+ AutoencoderKL,
14
+ )
15
+ from models.unet_2d_condition import UNet2DConditionModel
16
+ from diffusers.utils import BaseOutput
17
+ from transformers import CLIPTextModel, CLIPTokenizer
18
+
19
+ from utils.image_util import resize_max_res,chw2hwc,colorize_depth_maps
20
+ from utils.colormap import kitti_colormap
21
+ from utils.depth_ensemble import ensemble_depths
22
+ from utils.batch_size import find_batch_size
23
+ import cv2
24
+
25
+ class DepthNormalPipelineOutput(BaseOutput):
26
+ """
27
+ Output class for Marigold monocular depth prediction pipeline.
28
+
29
+ Args:
30
+ depth_np (`np.ndarray`):
31
+ Predicted depth map, with depth values in the range of [0, 1].
32
+ depth_colored (`PIL.Image.Image`):
33
+ Colorized depth map, with the shape of [3, H, W] and values in [0, 1].
34
+ normal_np (`np.ndarray`):
35
+ Predicted normal map, with depth values in the range of [0, 1].
36
+ normal_colored (`PIL.Image.Image`):
37
+ Colorized normal map, with the shape of [3, H, W] and values in [0, 1].
38
+ uncertainty (`None` or `np.ndarray`):
39
+ Uncalibrated uncertainty(MAD, median absolute deviation) coming from ensembling.
40
+ """
41
+ depth_np: np.ndarray
42
+ depth_colored: Image.Image
43
+ normal_np: np.ndarray
44
+ normal_colored: Image.Image
45
+ uncertainty: Union[None, np.ndarray]
46
+
47
+ class DepthNormalEstimationPipeline(DiffusionPipeline):
48
+ # two hyper-parameters
49
+ latent_scale_factor = 0.18215
50
+
51
+ def __init__(self,
52
+ unet:UNet2DConditionModel,
53
+ vae:AutoencoderKL,
54
+ scheduler:DDIMScheduler,
55
+ text_encoder:CLIPTextModel,
56
+ tokenizer:CLIPTokenizer,
57
+ ):
58
+ super().__init__()
59
+
60
+ self.register_modules(
61
+ unet=unet,
62
+ vae=vae,
63
+ scheduler=scheduler,
64
+ text_encoder=text_encoder,
65
+ tokenizer=tokenizer,
66
+ )
67
+ self.empty_text_embed = None
68
+
69
+ @torch.no_grad()
70
+ def __call__(self,
71
+ input_image:Image,
72
+ denoising_steps: int = 10,
73
+ ensemble_size: int = 10,
74
+ processing_res: int = 768,
75
+ match_input_res:bool =True,
76
+ batch_size:int = 0,
77
+ domain: str = "indoor",
78
+ color_map: str="Spectral",
79
+ show_progress_bar:bool = True,
80
+ ensemble_kwargs: Dict = None,
81
+ ) -> DepthNormalPipelineOutput:
82
+
83
+ # inherit from thea Diffusion Pipeline
84
+ device = self.device
85
+ input_size = input_image.size
86
+
87
+ # adjust the input resolution.
88
+ if not match_input_res:
89
+ assert (
90
+ processing_res is not None
91
+ )," Value Error: `resize_output_back` is only valid with "
92
+
93
+ assert processing_res >=0
94
+ assert denoising_steps >=1
95
+ assert ensemble_size >=1
96
+
97
+ # --------------- Image Processing ------------------------
98
+ # Resize image
99
+ if processing_res >0:
100
+ input_image = resize_max_res(
101
+ input_image, max_edge_resolution=processing_res
102
+ )
103
+
104
+ # Convert the image to RGB, to 1. reomve the alpha channel.
105
+ input_image = input_image.convert("RGB")
106
+ image = np.array(input_image)
107
+
108
+ # Normalize RGB Values.
109
+ rgb = np.transpose(image,(2,0,1))
110
+ rgb_norm = rgb / 255.0 * 2.0 - 1.0 # [0, 255] -> [-1, 1]
111
+ rgb_norm = torch.from_numpy(rgb_norm).to(self.dtype)
112
+ rgb_norm = rgb_norm.to(device)
113
+
114
+ assert rgb_norm.min() >= -1.0 and rgb_norm.max() <= 1.0
115
+
116
+ # ----------------- predicting depth -----------------
117
+ duplicated_rgb = torch.stack([rgb_norm] * ensemble_size)
118
+ single_rgb_dataset = TensorDataset(duplicated_rgb)
119
+
120
+ # find the batch size
121
+ if batch_size>0:
122
+ _bs = batch_size
123
+ else:
124
+ _bs = 1
125
+
126
+ single_rgb_loader = DataLoader(single_rgb_dataset, batch_size=_bs, shuffle=False)
127
+
128
+ # predicted the depth
129
+ depth_pred_ls = []
130
+ normal_pred_ls = []
131
+
132
+ if show_progress_bar:
133
+ iterable_bar = tqdm(
134
+ single_rgb_loader, desc=" " * 2 + "Inference batches", leave=False
135
+ )
136
+ else:
137
+ iterable_bar = single_rgb_loader
138
+
139
+ for batch in iterable_bar:
140
+ (batched_image, )= batch # here the image is still around 0-1
141
+
142
+ depth_pred_raw, normal_pred_raw = self.single_infer(
143
+ input_rgb=batched_image,
144
+ num_inference_steps=denoising_steps,
145
+ domain=domain,
146
+ show_pbar=show_progress_bar,
147
+ )
148
+ depth_pred_ls.append(depth_pred_raw.detach().clone())
149
+ normal_pred_ls.append(normal_pred_raw.detach().clone())
150
+
151
+ depth_preds = torch.concat(depth_pred_ls, axis=0).squeeze() #(10,224,768)
152
+ normal_preds = torch.concat(normal_pred_ls, axis=0).squeeze()
153
+ torch.cuda.empty_cache() # clear vram cache for ensembling
154
+
155
+ # ----------------- Test-time ensembling -----------------
156
+ if ensemble_size > 1:
157
+ depth_pred, pred_uncert = ensemble_depths(
158
+ depth_preds, **(ensemble_kwargs or {})
159
+ )
160
+ normal_pred = normal_preds[0]
161
+ else:
162
+ depth_pred = depth_preds
163
+ normal_pred = normal_preds
164
+ pred_uncert = None
165
+
166
+ # ----------------- Post processing -----------------
167
+ # Scale prediction to [0, 1]
168
+ min_d = torch.min(depth_pred)
169
+ max_d = torch.max(depth_pred)
170
+ depth_pred = (depth_pred - min_d) / (max_d - min_d)
171
+
172
+ # Convert to numpy
173
+ depth_pred = depth_pred.cpu().numpy().astype(np.float32)
174
+ normal_pred = normal_pred.cpu().numpy().astype(np.float32)
175
+
176
+ # Resize back to original resolution
177
+ if match_input_res:
178
+ pred_img = Image.fromarray(depth_pred)
179
+ pred_img = pred_img.resize(input_size)
180
+ depth_pred = np.asarray(pred_img)
181
+ normal_pred = cv2.resize(chw2hwc(normal_pred), input_size, interpolation = cv2.INTER_NEAREST)
182
+
183
+ # Clip output range: current size is the original size
184
+ depth_pred = depth_pred.clip(0, 1)
185
+ normal_pred = normal_pred.clip(-1, 1)
186
+
187
+ # Colorize
188
+ depth_colored = colorize_depth_maps(
189
+ depth_pred, 0, 1, cmap=color_map
190
+ ).squeeze() # [3, H, W], value in (0, 1)
191
+ depth_colored = (depth_colored * 255).astype(np.uint8)
192
+ depth_colored_hwc = chw2hwc(depth_colored)
193
+ depth_colored_img = Image.fromarray(depth_colored_hwc)
194
+
195
+ normal_colored = ((normal_pred + 1)/2 * 255).astype(np.uint8)
196
+ normal_colored_img = Image.fromarray(normal_colored)
197
+
198
+ return DepthNormalPipelineOutput(
199
+ depth_np = depth_pred,
200
+ depth_colored = depth_colored_img,
201
+ normal_np = normal_pred,
202
+ normal_colored = normal_colored_img,
203
+ uncertainty=pred_uncert,
204
+ )
205
+
206
+ def __encode_empty_text(self):
207
+ """
208
+ Encode text embedding for empty prompt
209
+ """
210
+ prompt = ""
211
+ text_inputs = self.tokenizer(
212
+ prompt,
213
+ padding="do_not_pad",
214
+ max_length=self.tokenizer.model_max_length,
215
+ truncation=True,
216
+ return_tensors="pt",
217
+ )
218
+ text_input_ids = text_inputs.input_ids.to(self.text_encoder.device) #[1,2]
219
+ # print(text_input_ids.shape)
220
+ self.empty_text_embed = self.text_encoder(text_input_ids)[0].to(self.dtype) #[1,2,1024]
221
+
222
+
223
+ @torch.no_grad()
224
+ def single_infer(self,input_rgb:torch.Tensor,
225
+ num_inference_steps:int,
226
+ domain:str,
227
+ show_pbar:bool,):
228
+
229
+ device = input_rgb.device
230
+
231
+ # Set timesteps: inherit from the diffuison pipeline
232
+ self.scheduler.set_timesteps(num_inference_steps, device=device) # here the numbers of the steps is only 10.
233
+ timesteps = self.scheduler.timesteps # [T]
234
+
235
+ # encode image
236
+ rgb_latent = self.encode_RGB(input_rgb)
237
+
238
+ # Initial depth map (Guassian noise)
239
+ geo_latent = torch.randn(rgb_latent.shape, device=device, dtype=self.dtype).repeat(2,1,1,1)
240
+ rgb_latent = rgb_latent.repeat(2,1,1,1)
241
+
242
+ # Batched empty text embedding
243
+ if self.empty_text_embed is None:
244
+ self.__encode_empty_text()
245
+
246
+ batch_empty_text_embed = self.empty_text_embed.repeat(
247
+ (rgb_latent.shape[0], 1, 1)
248
+ ) # [B, 2, 1024]
249
+
250
+ # hybrid hierarchical switcher
251
+ geo_class = torch.tensor([[0., 1.], [1, 0]], device=device, dtype=self.dtype)
252
+ geo_embedding = torch.cat([torch.sin(geo_class), torch.cos(geo_class)], dim=-1)
253
+
254
+ if domain == "indoor":
255
+ domain_class = torch.tensor([[1., 0., 0]], device=device, dtype=self.dtype).repeat(2,1)
256
+ elif domain == "outdoor":
257
+ domain_class = torch.tensor([[0., 1., 0]], device=device, dtype=self.dtype).repeat(2,1)
258
+ elif domain == "object":
259
+ domain_class = torch.tensor([[0., 0., 1]], device=device, dtype=self.dtype).repeat(2,1)
260
+ domain_embedding = torch.cat([torch.sin(domain_class), torch.cos(domain_class)], dim=-1)
261
+
262
+ class_embedding = torch.cat((geo_embedding, domain_embedding), dim=-1)
263
+
264
+ # Denoising loop
265
+ if show_pbar:
266
+ iterable = tqdm(
267
+ enumerate(timesteps),
268
+ total=len(timesteps),
269
+ leave=False,
270
+ desc=" " * 4 + "Diffusion denoising",
271
+ )
272
+ else:
273
+ iterable = enumerate(timesteps)
274
+
275
+ for i, t in iterable:
276
+ unet_input = torch.cat([rgb_latent, geo_latent], dim=1)
277
+
278
+ # predict the noise residual
279
+ noise_pred = self.unet(
280
+ unet_input, t.repeat(2), encoder_hidden_states=batch_empty_text_embed, class_labels=class_embedding
281
+ ).sample # [B, 4, h, w]
282
+
283
+ # compute the previous noisy sample x_t -> x_t-1
284
+ geo_latent = self.scheduler.step(noise_pred, t, geo_latent).prev_sample
285
+
286
+ geo_latent = geo_latent
287
+ torch.cuda.empty_cache()
288
+
289
+ depth = self.decode_depth(geo_latent[0][None])
290
+ depth = torch.clip(depth, -1.0, 1.0)
291
+ depth = (depth + 1.0) / 2.0
292
+
293
+ normal = self.decode_normal(geo_latent[1][None])
294
+ normal /= (torch.norm(normal, p=2, dim=1, keepdim=True)+1e-5)
295
+
296
+ return depth, normal
297
+
298
+
299
+ def encode_RGB(self, rgb_in: torch.Tensor) -> torch.Tensor:
300
+ """
301
+ Encode RGB image into latent.
302
+
303
+ Args:
304
+ rgb_in (`torch.Tensor`):
305
+ Input RGB image to be encoded.
306
+
307
+ Returns:
308
+ `torch.Tensor`: Image latent.
309
+ """
310
+
311
+ # encode
312
+ h = self.vae.encoder(rgb_in)
313
+
314
+ moments = self.vae.quant_conv(h)
315
+ mean, logvar = torch.chunk(moments, 2, dim=1)
316
+ # scale latent
317
+ rgb_latent = mean * self.latent_scale_factor
318
+
319
+ return rgb_latent
320
+
321
+ def decode_depth(self, depth_latent: torch.Tensor) -> torch.Tensor:
322
+ """
323
+ Decode depth latent into depth map.
324
+
325
+ Args:
326
+ depth_latent (`torch.Tensor`):
327
+ Depth latent to be decoded.
328
+
329
+ Returns:
330
+ `torch.Tensor`: Decoded depth map.
331
+ """
332
+
333
+ # scale latent
334
+ depth_latent = depth_latent / self.latent_scale_factor
335
+ # decode
336
+ z = self.vae.post_quant_conv(depth_latent)
337
+ stacked = self.vae.decoder(z)
338
+ # mean of output channels
339
+ depth_mean = stacked.mean(dim=1, keepdim=True)
340
+ return depth_mean
341
+
342
+ def decode_normal(self, normal_latent: torch.Tensor) -> torch.Tensor:
343
+ """
344
+ Decode normal latent into normal map.
345
+
346
+ Args:
347
+ normal_latent (`torch.Tensor`):
348
+ Depth latent to be decoded.
349
+
350
+ Returns:
351
+ `torch.Tensor`: Decoded normal map.
352
+ """
353
+
354
+ # scale latent
355
+ normal_latent = normal_latent / self.latent_scale_factor
356
+ # decode
357
+ z = self.vae.post_quant_conv(normal_latent)
358
+ normal = self.vae.decoder(z)
359
+ return normal
360
+
361
+
models/depth_normal_pipeline_clip.py ADDED
@@ -0,0 +1,368 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # A reimplemented version in public environments by Xiao Fu and Mu Hu
2
+
3
+ from typing import Any, Dict, Union
4
+
5
+ import torch
6
+ from torch.utils.data import DataLoader, TensorDataset
7
+ import numpy as np
8
+ from tqdm.auto import tqdm
9
+ from PIL import Image
10
+ from diffusers import (
11
+ DiffusionPipeline,
12
+ DDIMScheduler,
13
+ AutoencoderKL,
14
+ )
15
+ from models.unet_2d_condition import UNet2DConditionModel
16
+ from diffusers.utils import BaseOutput
17
+ from transformers import CLIPTextModel, CLIPTokenizer
18
+ from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection
19
+ import torchvision.transforms.functional as TF
20
+ from torchvision.transforms import InterpolationMode
21
+
22
+ from utils.image_util import resize_max_res,chw2hwc,colorize_depth_maps
23
+ from utils.colormap import kitti_colormap
24
+ from utils.depth_ensemble import ensemble_depths
25
+ from utils.normal_ensemble import ensemble_normals
26
+ from utils.batch_size import find_batch_size
27
+ import cv2
28
+
29
+ class DepthNormalPipelineOutput(BaseOutput):
30
+ """
31
+ Output class for Marigold monocular depth prediction pipeline.
32
+
33
+ Args:
34
+ depth_np (`np.ndarray`):
35
+ Predicted depth map, with depth values in the range of [0, 1].
36
+ depth_colored (`PIL.Image.Image`):
37
+ Colorized depth map, with the shape of [3, H, W] and values in [0, 1].
38
+ normal_np (`np.ndarray`):
39
+ Predicted normal map, with depth values in the range of [0, 1].
40
+ normal_colored (`PIL.Image.Image`):
41
+ Colorized normal map, with the shape of [3, H, W] and values in [0, 1].
42
+ uncertainty (`None` or `np.ndarray`):
43
+ Uncalibrated uncertainty(MAD, median absolute deviation) coming from ensembling.
44
+ """
45
+ depth_np: np.ndarray
46
+ depth_colored: Image.Image
47
+ normal_np: np.ndarray
48
+ normal_colored: Image.Image
49
+ uncertainty: Union[None, np.ndarray]
50
+
51
+ class DepthNormalEstimationPipeline(DiffusionPipeline):
52
+ # two hyper-parameters
53
+ latent_scale_factor = 0.18215
54
+
55
+ def __init__(self,
56
+ unet:UNet2DConditionModel,
57
+ vae:AutoencoderKL,
58
+ scheduler:DDIMScheduler,
59
+ image_encoder:CLIPVisionModelWithProjection,
60
+ feature_extractor:CLIPImageProcessor,
61
+ ):
62
+ super().__init__()
63
+
64
+ self.register_modules(
65
+ unet=unet,
66
+ vae=vae,
67
+ scheduler=scheduler,
68
+ image_encoder=image_encoder,
69
+ feature_extractor=feature_extractor,
70
+ )
71
+ self.img_embed = None
72
+
73
+ @torch.no_grad()
74
+ def __call__(self,
75
+ input_image:Image,
76
+ denosing_steps: int = 10,
77
+ ensemble_size: int = 10,
78
+ processing_res: int = 768,
79
+ match_input_res:bool =True,
80
+ batch_size:int = 0,
81
+ domain: str = "indoor",
82
+ color_map: str="Spectral",
83
+ show_progress_bar:bool = True,
84
+ ensemble_kwargs: Dict = None,
85
+ ) -> DepthNormalPipelineOutput:
86
+
87
+ # inherit from thea Diffusion Pipeline
88
+ device = self.device
89
+ input_size = input_image.size
90
+
91
+ # adjust the input resolution.
92
+ if not match_input_res:
93
+ assert (
94
+ processing_res is not None
95
+ )," Value Error: `resize_output_back` is only valid with "
96
+
97
+ assert processing_res >=0
98
+ assert denosing_steps >=1
99
+ assert ensemble_size >=1
100
+
101
+ # --------------- Image Processing ------------------------
102
+ # Resize image
103
+ if processing_res >0:
104
+ input_image = resize_max_res(
105
+ input_image, max_edge_resolution=processing_res
106
+ )
107
+
108
+ # Convert the image to RGB, to 1. reomve the alpha channel.
109
+ input_image = input_image.convert("RGB")
110
+ image = np.array(input_image)
111
+
112
+ # Normalize RGB Values.
113
+ rgb = np.transpose(image,(2,0,1))
114
+ rgb_norm = rgb / 255.0 * 2.0 - 1.0 # [0, 255] -> [-1, 1]
115
+ rgb_norm = torch.from_numpy(rgb_norm).to(self.dtype)
116
+ rgb_norm = rgb_norm.to(device)
117
+
118
+ assert rgb_norm.min() >= -1.0 and rgb_norm.max() <= 1.0
119
+
120
+ # ----------------- predicting depth -----------------
121
+ duplicated_rgb = torch.stack([rgb_norm] * ensemble_size)
122
+ single_rgb_dataset = TensorDataset(duplicated_rgb)
123
+
124
+ # find the batch size
125
+ if batch_size>0:
126
+ _bs = batch_size
127
+ else:
128
+ _bs = 1
129
+
130
+ single_rgb_loader = DataLoader(single_rgb_dataset, batch_size=_bs, shuffle=False)
131
+
132
+ # predicted the depth
133
+ depth_pred_ls = []
134
+ normal_pred_ls = []
135
+
136
+ if show_progress_bar:
137
+ iterable_bar = tqdm(
138
+ single_rgb_loader, desc=" " * 2 + "Inference batches", leave=False
139
+ )
140
+ else:
141
+ iterable_bar = single_rgb_loader
142
+
143
+ for batch in iterable_bar:
144
+ (batched_image, )= batch # here the image is still around 0-1
145
+
146
+ depth_pred_raw, normal_pred_raw = self.single_infer(
147
+ input_rgb=batched_image,
148
+ num_inference_steps=denosing_steps,
149
+ domain=domain,
150
+ show_pbar=show_progress_bar,
151
+ )
152
+ depth_pred_ls.append(depth_pred_raw.detach().clone())
153
+ normal_pred_ls.append(normal_pred_raw.detach().clone())
154
+
155
+ depth_preds = torch.concat(depth_pred_ls, axis=0).squeeze() #(10,224,768)
156
+ normal_preds = torch.concat(normal_pred_ls, axis=0).squeeze()
157
+ torch.cuda.empty_cache() # clear vram cache for ensembling
158
+
159
+ # ----------------- Test-time ensembling -----------------
160
+ if ensemble_size > 1:
161
+ depth_pred, pred_uncert = ensemble_depths(
162
+ depth_preds, **(ensemble_kwargs or {})
163
+ )
164
+ normal_pred = ensemble_normals(normal_preds)
165
+ else:
166
+ depth_pred = depth_preds
167
+ normal_pred = normal_preds
168
+ pred_uncert = None
169
+
170
+ # ----------------- Post processing -----------------
171
+ # Scale prediction to [0, 1]
172
+ min_d = torch.min(depth_pred)
173
+ max_d = torch.max(depth_pred)
174
+ depth_pred = (depth_pred - min_d) / (max_d - min_d)
175
+
176
+ # Convert to numpy
177
+ depth_pred = depth_pred.cpu().numpy().astype(np.float32)
178
+ normal_pred = normal_pred.cpu().numpy().astype(np.float32)
179
+
180
+ # Resize back to original resolution
181
+ if match_input_res:
182
+ pred_img = Image.fromarray(depth_pred)
183
+ pred_img = pred_img.resize(input_size)
184
+ depth_pred = np.asarray(pred_img)
185
+ normal_pred = cv2.resize(chw2hwc(normal_pred), input_size, interpolation = cv2.INTER_NEAREST)
186
+
187
+ # Clip output range: current size is the original size
188
+ depth_pred = depth_pred.clip(0, 1)
189
+ normal_pred = normal_pred.clip(-1, 1)
190
+
191
+ # Colorize
192
+ depth_colored = colorize_depth_maps(
193
+ depth_pred, 0, 1, cmap=color_map
194
+ ).squeeze() # [3, H, W], value in (0, 1)
195
+ depth_colored = (depth_colored * 255).astype(np.uint8)
196
+ depth_colored_hwc = chw2hwc(depth_colored)
197
+ depth_colored_img = Image.fromarray(depth_colored_hwc)
198
+
199
+ normal_colored = ((normal_pred + 1)/2 * 255).astype(np.uint8)
200
+ normal_colored_img = Image.fromarray(normal_colored)
201
+
202
+ return DepthNormalPipelineOutput(
203
+ depth_np = depth_pred,
204
+ depth_colored = depth_colored_img,
205
+ normal_np = normal_pred,
206
+ normal_colored = normal_colored_img,
207
+ uncertainty=pred_uncert,
208
+ )
209
+
210
+ def __encode_img_embed(self, rgb):
211
+ """
212
+ Encode clip embeddings for img
213
+ """
214
+ clip_image_mean = torch.as_tensor(self.feature_extractor.image_mean)[:,None,None].to(device=self.device, dtype=self.dtype)
215
+ clip_image_std = torch.as_tensor(self.feature_extractor.image_std)[:,None,None].to(device=self.device, dtype=self.dtype)
216
+
217
+ img_in_proc = TF.resize((rgb +1)/2,
218
+ (self.feature_extractor.crop_size['height'], self.feature_extractor.crop_size['width']),
219
+ interpolation=InterpolationMode.BICUBIC,
220
+ antialias=True
221
+ )
222
+ # do the normalization in float32 to preserve precision
223
+ img_in_proc = ((img_in_proc.float() - clip_image_mean) / clip_image_std).to(self.dtype)
224
+ img_embed = self.image_encoder(img_in_proc).image_embeds.unsqueeze(1).to(self.dtype)
225
+
226
+ self.img_embed = img_embed
227
+
228
+
229
+ @torch.no_grad()
230
+ def single_infer(self,input_rgb:torch.Tensor,
231
+ num_inference_steps:int,
232
+ domain:str,
233
+ show_pbar:bool,):
234
+
235
+ device = input_rgb.device
236
+
237
+ # Set timesteps: inherit from the diffuison pipeline
238
+ self.scheduler.set_timesteps(num_inference_steps, device=device) # here the numbers of the steps is only 10.
239
+ timesteps = self.scheduler.timesteps # [T]
240
+
241
+ # encode image
242
+ rgb_latent = self.encode_RGB(input_rgb)
243
+
244
+ # Initial depth map (Guassian noise)
245
+ geo_latent = torch.randn(rgb_latent.shape, device=device, dtype=self.dtype).repeat(2,1,1,1)
246
+ rgb_latent = rgb_latent.repeat(2,1,1,1)
247
+
248
+ # Batched img embedding
249
+ if self.img_embed is None:
250
+ self.__encode_img_embed(input_rgb)
251
+
252
+ batch_img_embed = self.img_embed.repeat(
253
+ (rgb_latent.shape[0], 1, 1)
254
+ ) # [B, 1, 768]
255
+
256
+ # hybrid hierarchical switcher
257
+ geo_class = torch.tensor([[0., 1.], [1, 0]], device=device, dtype=self.dtype)
258
+ geo_embedding = torch.cat([torch.sin(geo_class), torch.cos(geo_class)], dim=-1)
259
+
260
+ if domain == "indoor":
261
+ domain_class = torch.tensor([[1., 0., 0]], device=device, dtype=self.dtype).repeat(2,1)
262
+ elif domain == "outdoor":
263
+ domain_class = torch.tensor([[0., 1., 0]], device=device, dtype=self.dtype).repeat(2,1)
264
+ elif domain == "object":
265
+ domain_class = torch.tensor([[0., 0., 1]], device=device, dtype=self.dtype).repeat(2,1)
266
+ domain_embedding = torch.cat([torch.sin(domain_class), torch.cos(domain_class)], dim=-1)
267
+
268
+ class_embedding = torch.cat((geo_embedding, domain_embedding), dim=-1)
269
+
270
+ # Denoising loop
271
+ if show_pbar:
272
+ iterable = tqdm(
273
+ enumerate(timesteps),
274
+ total=len(timesteps),
275
+ leave=False,
276
+ desc=" " * 4 + "Diffusion denoising",
277
+ )
278
+ else:
279
+ iterable = enumerate(timesteps)
280
+
281
+ for i, t in iterable:
282
+ unet_input = torch.cat([rgb_latent, geo_latent], dim=1)
283
+
284
+ # predict the noise residual
285
+ noise_pred = self.unet(
286
+ unet_input, t.repeat(2), encoder_hidden_states=batch_img_embed, class_labels=class_embedding
287
+ ).sample # [B, 4, h, w]
288
+
289
+ # compute the previous noisy sample x_t -> x_t-1
290
+ geo_latent = self.scheduler.step(noise_pred, t, geo_latent).prev_sample
291
+
292
+ geo_latent = geo_latent
293
+ torch.cuda.empty_cache()
294
+
295
+ depth = self.decode_depth(geo_latent[0][None])
296
+ depth = torch.clip(depth, -1.0, 1.0)
297
+ depth = (depth + 1.0) / 2.0
298
+
299
+ normal = self.decode_normal(geo_latent[1][None])
300
+ normal /= (torch.norm(normal, p=2, dim=1, keepdim=True)+1e-5)
301
+ normal *= -1.
302
+
303
+ return depth, normal
304
+
305
+
306
+ def encode_RGB(self, rgb_in: torch.Tensor) -> torch.Tensor:
307
+ """
308
+ Encode RGB image into latent.
309
+
310
+ Args:
311
+ rgb_in (`torch.Tensor`):
312
+ Input RGB image to be encoded.
313
+
314
+ Returns:
315
+ `torch.Tensor`: Image latent.
316
+ """
317
+
318
+ # encode
319
+ h = self.vae.encoder(rgb_in)
320
+
321
+ moments = self.vae.quant_conv(h)
322
+ mean, logvar = torch.chunk(moments, 2, dim=1)
323
+ # scale latent
324
+ rgb_latent = mean * self.latent_scale_factor
325
+
326
+ return rgb_latent
327
+
328
+ def decode_depth(self, depth_latent: torch.Tensor) -> torch.Tensor:
329
+ """
330
+ Decode depth latent into depth map.
331
+
332
+ Args:
333
+ depth_latent (`torch.Tensor`):
334
+ Depth latent to be decoded.
335
+
336
+ Returns:
337
+ `torch.Tensor`: Decoded depth map.
338
+ """
339
+
340
+ # scale latent
341
+ depth_latent = depth_latent / self.latent_scale_factor
342
+ # decode
343
+ z = self.vae.post_quant_conv(depth_latent)
344
+ stacked = self.vae.decoder(z)
345
+ # mean of output channels
346
+ depth_mean = stacked.mean(dim=1, keepdim=True)
347
+ return depth_mean
348
+
349
+ def decode_normal(self, normal_latent: torch.Tensor) -> torch.Tensor:
350
+ """
351
+ Decode normal latent into normal map.
352
+
353
+ Args:
354
+ normal_latent (`torch.Tensor`):
355
+ Depth latent to be decoded.
356
+
357
+ Returns:
358
+ `torch.Tensor`: Decoded normal map.
359
+ """
360
+
361
+ # scale latent
362
+ normal_latent = normal_latent / self.latent_scale_factor
363
+ # decode
364
+ z = self.vae.post_quant_conv(normal_latent)
365
+ normal = self.vae.decoder(z)
366
+ return normal
367
+
368
+
models/depth_normal_pipeline_clip_cfg.py ADDED
@@ -0,0 +1,371 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # A reimplemented version in public environments by Xiao Fu and Mu Hu
2
+
3
+ from typing import Any, Dict, Union
4
+
5
+ import torch
6
+ from torch.utils.data import DataLoader, TensorDataset
7
+ import numpy as np
8
+ from tqdm.auto import tqdm
9
+ from PIL import Image
10
+ from diffusers import (
11
+ DiffusionPipeline,
12
+ DDIMScheduler,
13
+ AutoencoderKL,
14
+ )
15
+ from models.unet_2d_condition import UNet2DConditionModel
16
+ from diffusers.utils import BaseOutput
17
+ from transformers import CLIPTextModel, CLIPTokenizer
18
+ from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection
19
+ import torchvision.transforms.functional as TF
20
+ from torchvision.transforms import InterpolationMode
21
+
22
+ from utils.image_util import resize_max_res,chw2hwc,colorize_depth_maps
23
+ from utils.colormap import kitti_colormap
24
+ from utils.depth_ensemble import ensemble_depths
25
+ from utils.normal_ensemble import ensemble_normals
26
+ from utils.batch_size import find_batch_size
27
+ import cv2
28
+
29
+ class DepthNormalPipelineOutput(BaseOutput):
30
+ """
31
+ Output class for Marigold monocular depth prediction pipeline.
32
+
33
+ Args:
34
+ depth_np (`np.ndarray`):
35
+ Predicted depth map, with depth values in the range of [0, 1].
36
+ depth_colored (`PIL.Image.Image`):
37
+ Colorized depth map, with the shape of [3, H, W] and values in [0, 1].
38
+ normal_np (`np.ndarray`):
39
+ Predicted normal map, with depth values in the range of [0, 1].
40
+ normal_colored (`PIL.Image.Image`):
41
+ Colorized normal map, with the shape of [3, H, W] and values in [0, 1].
42
+ uncertainty (`None` or `np.ndarray`):
43
+ Uncalibrated uncertainty(MAD, median absolute deviation) coming from ensembling.
44
+ """
45
+ depth_np: np.ndarray
46
+ depth_colored: Image.Image
47
+ normal_np: np.ndarray
48
+ normal_colored: Image.Image
49
+ uncertainty: Union[None, np.ndarray]
50
+
51
+ class DepthNormalEstimationPipeline(DiffusionPipeline):
52
+ # two hyper-parameters
53
+ latent_scale_factor = 0.18215
54
+
55
+ def __init__(self,
56
+ unet:UNet2DConditionModel,
57
+ vae:AutoencoderKL,
58
+ scheduler:DDIMScheduler,
59
+ image_encoder:CLIPVisionModelWithProjection,
60
+ feature_extractor:CLIPImageProcessor,
61
+ ):
62
+ super().__init__()
63
+
64
+ self.register_modules(
65
+ unet=unet,
66
+ vae=vae,
67
+ scheduler=scheduler,
68
+ image_encoder=image_encoder,
69
+ feature_extractor=feature_extractor,
70
+ )
71
+ self.img_embed = None
72
+
73
+ @torch.no_grad()
74
+ def __call__(self,
75
+ input_image:Image,
76
+ denosing_steps: int = 10,
77
+ ensemble_size: int = 10,
78
+ processing_res: int = 768,
79
+ match_input_res:bool =True,
80
+ batch_size:int = 0,
81
+ domain: str = "indoor",
82
+ color_map: str="Spectral",
83
+ show_progress_bar:bool = True,
84
+ ensemble_kwargs: Dict = None,
85
+ ) -> DepthNormalPipelineOutput:
86
+
87
+ # inherit from thea Diffusion Pipeline
88
+ device = self.device
89
+ input_size = input_image.size
90
+
91
+ # adjust the input resolution.
92
+ if not match_input_res:
93
+ assert (
94
+ processing_res is not None
95
+ )," Value Error: `resize_output_back` is only valid with "
96
+
97
+ assert processing_res >=0
98
+ assert denosing_steps >=1
99
+ assert ensemble_size >=1
100
+
101
+ # --------------- Image Processing ------------------------
102
+ # Resize image
103
+ if processing_res >0:
104
+ input_image = resize_max_res(
105
+ input_image, max_edge_resolution=processing_res
106
+ )
107
+
108
+ # Convert the image to RGB, to 1. reomve the alpha channel.
109
+ input_image = input_image.convert("RGB")
110
+ image = np.array(input_image)
111
+
112
+ # Normalize RGB Values.
113
+ rgb = np.transpose(image,(2,0,1))
114
+ rgb_norm = rgb / 255.0 * 2.0 - 1.0 # [0, 255] -> [-1, 1]
115
+ rgb_norm = torch.from_numpy(rgb_norm).to(self.dtype)
116
+ rgb_norm = rgb_norm.to(device)
117
+
118
+ assert rgb_norm.min() >= -1.0 and rgb_norm.max() <= 1.0
119
+
120
+ # ----------------- predicting depth -----------------
121
+ duplicated_rgb = torch.stack([rgb_norm] * ensemble_size)
122
+ single_rgb_dataset = TensorDataset(duplicated_rgb)
123
+
124
+ # find the batch size
125
+ if batch_size>0:
126
+ _bs = batch_size
127
+ else:
128
+ _bs = 1
129
+
130
+ single_rgb_loader = DataLoader(single_rgb_dataset, batch_size=_bs, shuffle=False)
131
+
132
+ # predicted the depth
133
+ depth_pred_ls = []
134
+ normal_pred_ls = []
135
+
136
+ if show_progress_bar:
137
+ iterable_bar = tqdm(
138
+ single_rgb_loader, desc=" " * 2 + "Inference batches", leave=False
139
+ )
140
+ else:
141
+ iterable_bar = single_rgb_loader
142
+
143
+ for batch in iterable_bar:
144
+ (batched_image, )= batch # here the image is still around 0-1
145
+
146
+ depth_pred_raw, normal_pred_raw = self.single_infer(
147
+ input_rgb=batched_image,
148
+ num_inference_steps=denosing_steps,
149
+ domain=domain,
150
+ show_pbar=show_progress_bar,
151
+ )
152
+ depth_pred_ls.append(depth_pred_raw.detach().clone())
153
+ normal_pred_ls.append(normal_pred_raw.detach().clone())
154
+
155
+ depth_preds = torch.concat(depth_pred_ls, axis=0).squeeze()
156
+ normal_preds = torch.concat(normal_pred_ls, axis=0).squeeze()
157
+ torch.cuda.empty_cache() # clear vram cache for ensembling
158
+
159
+ # ----------------- Test-time ensembling -----------------
160
+ if ensemble_size > 1:
161
+ depth_pred, pred_uncert = ensemble_depths(
162
+ depth_preds, **(ensemble_kwargs or {})
163
+ )
164
+ normal_pred = ensemble_normals(normal_preds)
165
+ else:
166
+ depth_pred = depth_preds
167
+ normal_pred = normal_preds
168
+ pred_uncert = None
169
+
170
+ # ----------------- Post processing -----------------
171
+ # Scale prediction to [0, 1]
172
+ min_d = torch.min(depth_pred)
173
+ max_d = torch.max(depth_pred)
174
+ depth_pred = (depth_pred - min_d) / (max_d - min_d)
175
+
176
+ # Convert to numpy
177
+ depth_pred = depth_pred.cpu().numpy().astype(np.float32)
178
+ normal_pred = normal_pred.cpu().numpy().astype(np.float32)
179
+
180
+ # Resize back to original resolution
181
+ if match_input_res:
182
+ pred_img = Image.fromarray(depth_pred)
183
+ pred_img = pred_img.resize(input_size)
184
+ depth_pred = np.asarray(pred_img)
185
+ normal_pred = cv2.resize(chw2hwc(normal_pred), input_size, interpolation = cv2.INTER_NEAREST)
186
+
187
+ # Clip output range: current size is the original size
188
+ depth_pred = depth_pred.clip(0, 1)
189
+ normal_pred = normal_pred.clip(-1, 1)
190
+
191
+ # Colorize
192
+ depth_colored = colorize_depth_maps(
193
+ depth_pred, 0, 1, cmap=color_map
194
+ ).squeeze() # [3, H, W], value in (0, 1)
195
+ depth_colored = (depth_colored * 255).astype(np.uint8)
196
+ depth_colored_hwc = chw2hwc(depth_colored)
197
+ depth_colored_img = Image.fromarray(depth_colored_hwc)
198
+
199
+ normal_colored = ((normal_pred + 1)/2 * 255).astype(np.uint8)
200
+ normal_colored_img = Image.fromarray(normal_colored)
201
+
202
+ return DepthNormalPipelineOutput(
203
+ depth_np = depth_pred,
204
+ depth_colored = depth_colored_img,
205
+ normal_np = normal_pred,
206
+ normal_colored = normal_colored_img,
207
+ uncertainty=pred_uncert,
208
+ )
209
+
210
+ def __encode_img_embed(self, rgb):
211
+ """
212
+ Encode clip embeddings for img
213
+ """
214
+ clip_image_mean = torch.as_tensor(self.feature_extractor.image_mean)[:,None,None].to(device=self.device, dtype=self.dtype)
215
+ clip_image_std = torch.as_tensor(self.feature_extractor.image_std)[:,None,None].to(device=self.device, dtype=self.dtype)
216
+
217
+ img_in_proc = TF.resize((rgb +1)/2,
218
+ (self.feature_extractor.crop_size['height'], self.feature_extractor.crop_size['width']),
219
+ interpolation=InterpolationMode.BICUBIC,
220
+ antialias=True
221
+ )
222
+ # do the normalization in float32 to preserve precision
223
+ img_in_proc = ((img_in_proc.float() - clip_image_mean) / clip_image_std).to(self.dtype)
224
+ img_embed = self.image_encoder(img_in_proc).image_embeds.unsqueeze(1).to(self.dtype)
225
+
226
+ self.img_embed = img_embed
227
+
228
+
229
+ @torch.no_grad()
230
+ def single_infer(self,input_rgb:torch.Tensor,
231
+ num_inference_steps:int,
232
+ domain:str,
233
+ show_pbar:bool,):
234
+
235
+ device = input_rgb.device
236
+
237
+ # Set timesteps: inherit from the diffuison pipeline
238
+ self.scheduler.set_timesteps(num_inference_steps, device=device) # here the numbers of the steps is only 10.
239
+ timesteps = self.scheduler.timesteps # [T]
240
+
241
+ # encode image
242
+ rgb_latent = self.encode_RGB(input_rgb)
243
+
244
+ # Initial depth map (Guassian noise)
245
+ geo_latent = torch.randn(rgb_latent.shape, device=device, dtype=self.dtype).repeat(2,1,1,1)
246
+ rgb_latent = rgb_latent.repeat(2,1,1,1)
247
+
248
+ # Batched img embedding
249
+ if self.img_embed is None:
250
+ self.__encode_img_embed(input_rgb)
251
+
252
+ batch_img_embed = self.img_embed.repeat(
253
+ (rgb_latent.shape[0], 1, 1)
254
+ ) # [B, 1, 768]
255
+
256
+ batch_img_embed = torch.cat((torch.zeros_like(batch_img_embed), batch_img_embed), dim=0)
257
+ rgb_latent = torch.cat((torch.zeros_like(rgb_latent), rgb_latent), dim=0)
258
+
259
+ # hybrid switcher
260
+ geo_class = torch.tensor([[0., 1.], [1, 0]], device=device, dtype=self.dtype)
261
+ geo_embedding = torch.cat([torch.sin(geo_class), torch.cos(geo_class)], dim=-1)
262
+
263
+ if domain == "indoor":
264
+ domain_class = torch.tensor([[1., 0., 0]], device=device, dtype=self.dtype).repeat(2,1)
265
+ elif domain == "outdoor":
266
+ domain_class = torch.tensor([[0., 1., 0]], device=device, dtype=self.dtype).repeat(2,1)
267
+ elif domain == "object":
268
+ domain_class = torch.tensor([[0., 0., 1]], device=device, dtype=self.dtype).repeat(2,1)
269
+ domain_embedding = torch.cat([torch.sin(domain_class), torch.cos(domain_class)], dim=-1)
270
+
271
+ class_embedding = torch.cat((geo_embedding, domain_embedding), dim=-1)
272
+
273
+ # Denoising loop
274
+ if show_pbar:
275
+ iterable = tqdm(
276
+ enumerate(timesteps),
277
+ total=len(timesteps),
278
+ leave=False,
279
+ desc=" " * 4 + "Diffusion denoising",
280
+ )
281
+ else:
282
+ iterable = enumerate(timesteps)
283
+
284
+ for i, t in iterable:
285
+ unet_input = torch.cat((rgb_latent, geo_latent.repeat(2,1,1,1)), dim=1)
286
+ # predict the noise residual
287
+ noise_pred = self.unet(unet_input, t.repeat(4), encoder_hidden_states=batch_img_embed, class_labels=class_embedding.repeat(2,1)).sample
288
+ noise_pred_uncond, noise_pred_cond = noise_pred.chunk(2)
289
+ guidance_scale = 3.
290
+ noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_cond - noise_pred_uncond)
291
+
292
+ # compute the previous noisy sample x_t -> x_t-1
293
+ geo_latent = self.scheduler.step(noise_pred, t, geo_latent).prev_sample
294
+
295
+ geo_latent = geo_latent
296
+ torch.cuda.empty_cache()
297
+
298
+ depth = self.decode_depth(geo_latent[0][None])
299
+ depth = torch.clip(depth, -1.0, 1.0)
300
+ depth = (depth + 1.0) / 2.0
301
+
302
+ normal = self.decode_normal(geo_latent[1][None])
303
+ normal /= (torch.norm(normal, p=2, dim=1, keepdim=True)+1e-5)
304
+ normal *= -1.
305
+
306
+ return depth, normal
307
+
308
+
309
+ def encode_RGB(self, rgb_in: torch.Tensor) -> torch.Tensor:
310
+ """
311
+ Encode RGB image into latent.
312
+
313
+ Args:
314
+ rgb_in (`torch.Tensor`):
315
+ Input RGB image to be encoded.
316
+
317
+ Returns:
318
+ `torch.Tensor`: Image latent.
319
+ """
320
+
321
+ # encode
322
+ h = self.vae.encoder(rgb_in)
323
+
324
+ moments = self.vae.quant_conv(h)
325
+ mean, logvar = torch.chunk(moments, 2, dim=1)
326
+ # scale latent
327
+ rgb_latent = mean * self.latent_scale_factor
328
+
329
+ return rgb_latent
330
+
331
+ def decode_depth(self, depth_latent: torch.Tensor) -> torch.Tensor:
332
+ """
333
+ Decode depth latent into depth map.
334
+
335
+ Args:
336
+ depth_latent (`torch.Tensor`):
337
+ Depth latent to be decoded.
338
+
339
+ Returns:
340
+ `torch.Tensor`: Decoded depth map.
341
+ """
342
+
343
+ # scale latent
344
+ depth_latent = depth_latent / self.latent_scale_factor
345
+ # decode
346
+ z = self.vae.post_quant_conv(depth_latent)
347
+ stacked = self.vae.decoder(z)
348
+ # mean of output channels
349
+ depth_mean = stacked.mean(dim=1, keepdim=True)
350
+ return depth_mean
351
+
352
+ def decode_normal(self, normal_latent: torch.Tensor) -> torch.Tensor:
353
+ """
354
+ Decode normal latent into normal map.
355
+
356
+ Args:
357
+ normal_latent (`torch.Tensor`):
358
+ Depth latent to be decoded.
359
+
360
+ Returns:
361
+ `torch.Tensor`: Decoded normal map.
362
+ """
363
+
364
+ # scale latent
365
+ normal_latent = normal_latent / self.latent_scale_factor
366
+ # decode
367
+ z = self.vae.post_quant_conv(normal_latent)
368
+ normal = self.vae.decoder(z)
369
+ return normal
370
+
371
+
models/depth_normal_pipeline_clip_cfg_1.py ADDED
@@ -0,0 +1,371 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # A reimplemented version in public environments by Xiao Fu and Mu Hu
2
+
3
+ from typing import Any, Dict, Union
4
+
5
+ import torch
6
+ from torch.utils.data import DataLoader, TensorDataset
7
+ import numpy as np
8
+ from tqdm.auto import tqdm
9
+ from PIL import Image
10
+ from diffusers import (
11
+ DiffusionPipeline,
12
+ DDIMScheduler,
13
+ AutoencoderKL,
14
+ )
15
+ from models.unet_2d_condition import UNet2DConditionModel
16
+ from diffusers.utils import BaseOutput
17
+ from transformers import CLIPTextModel, CLIPTokenizer
18
+ from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection
19
+ import torchvision.transforms.functional as TF
20
+ from torchvision.transforms import InterpolationMode
21
+
22
+ from utils.image_util import resize_max_res,chw2hwc,colorize_depth_maps
23
+ from utils.colormap import kitti_colormap
24
+ from utils.depth_ensemble import ensemble_depths
25
+ from utils.normal_ensemble import ensemble_normals
26
+ from utils.batch_size import find_batch_size
27
+ import cv2
28
+
29
+ class DepthNormalPipelineOutput(BaseOutput):
30
+ """
31
+ Output class for Marigold monocular depth prediction pipeline.
32
+
33
+ Args:
34
+ depth_np (`np.ndarray`):
35
+ Predicted depth map, with depth values in the range of [0, 1].
36
+ depth_colored (`PIL.Image.Image`):
37
+ Colorized depth map, with the shape of [3, H, W] and values in [0, 1].
38
+ normal_np (`np.ndarray`):
39
+ Predicted normal map, with depth values in the range of [0, 1].
40
+ normal_colored (`PIL.Image.Image`):
41
+ Colorized normal map, with the shape of [3, H, W] and values in [0, 1].
42
+ uncertainty (`None` or `np.ndarray`):
43
+ Uncalibrated uncertainty(MAD, median absolute deviation) coming from ensembling.
44
+ """
45
+ depth_np: np.ndarray
46
+ depth_colored: Image.Image
47
+ normal_np: np.ndarray
48
+ normal_colored: Image.Image
49
+ uncertainty: Union[None, np.ndarray]
50
+
51
+ class DepthNormalEstimationPipeline(DiffusionPipeline):
52
+ # two hyper-parameters
53
+ latent_scale_factor = 0.18215
54
+
55
+ def __init__(self,
56
+ unet:UNet2DConditionModel,
57
+ vae:AutoencoderKL,
58
+ scheduler:DDIMScheduler,
59
+ image_encoder:CLIPVisionModelWithProjection,
60
+ feature_extractor:CLIPImageProcessor,
61
+ ):
62
+ super().__init__()
63
+
64
+ self.register_modules(
65
+ unet=unet,
66
+ vae=vae,
67
+ scheduler=scheduler,
68
+ image_encoder=image_encoder,
69
+ feature_extractor=feature_extractor,
70
+ )
71
+ self.img_embed = None
72
+
73
+ @torch.no_grad()
74
+ def __call__(self,
75
+ input_image:Image,
76
+ denosing_steps: int = 10,
77
+ ensemble_size: int = 10,
78
+ processing_res: int = 768,
79
+ match_input_res:bool =True,
80
+ batch_size:int = 0,
81
+ domain: str = "indoor",
82
+ color_map: str="Spectral",
83
+ show_progress_bar:bool = True,
84
+ ensemble_kwargs: Dict = None,
85
+ ) -> DepthNormalPipelineOutput:
86
+
87
+ # inherit from thea Diffusion Pipeline
88
+ device = self.device
89
+ input_size = input_image.size
90
+
91
+ # adjust the input resolution.
92
+ if not match_input_res:
93
+ assert (
94
+ processing_res is not None
95
+ )," Value Error: `resize_output_back` is only valid with "
96
+
97
+ assert processing_res >=0
98
+ assert denosing_steps >=1
99
+ assert ensemble_size >=1
100
+
101
+ # --------------- Image Processing ------------------------
102
+ # Resize image
103
+ if processing_res >0:
104
+ input_image = resize_max_res(
105
+ input_image, max_edge_resolution=processing_res
106
+ )
107
+
108
+ # Convert the image to RGB, to 1. reomve the alpha channel.
109
+ input_image = input_image.convert("RGB")
110
+ image = np.array(input_image)
111
+
112
+ # Normalize RGB Values.
113
+ rgb = np.transpose(image,(2,0,1))
114
+ rgb_norm = rgb / 255.0 * 2.0 - 1.0 # [0, 255] -> [-1, 1]
115
+ rgb_norm = torch.from_numpy(rgb_norm).to(self.dtype)
116
+ rgb_norm = rgb_norm.to(device)
117
+
118
+ assert rgb_norm.min() >= -1.0 and rgb_norm.max() <= 1.0
119
+
120
+ # ----------------- predicting depth -----------------
121
+ duplicated_rgb = torch.stack([rgb_norm] * ensemble_size)
122
+ single_rgb_dataset = TensorDataset(duplicated_rgb)
123
+
124
+ # find the batch size
125
+ if batch_size>0:
126
+ _bs = batch_size
127
+ else:
128
+ _bs = 1
129
+
130
+ single_rgb_loader = DataLoader(single_rgb_dataset, batch_size=_bs, shuffle=False)
131
+
132
+ # predicted the depth
133
+ depth_pred_ls = []
134
+ normal_pred_ls = []
135
+
136
+ if show_progress_bar:
137
+ iterable_bar = tqdm(
138
+ single_rgb_loader, desc=" " * 2 + "Inference batches", leave=False
139
+ )
140
+ else:
141
+ iterable_bar = single_rgb_loader
142
+
143
+ for batch in iterable_bar:
144
+ (batched_image, )= batch # here the image is still around 0-1
145
+
146
+ depth_pred_raw, normal_pred_raw = self.single_infer(
147
+ input_rgb=batched_image,
148
+ num_inference_steps=denosing_steps,
149
+ domain=domain,
150
+ show_pbar=show_progress_bar,
151
+ )
152
+ depth_pred_ls.append(depth_pred_raw.detach().clone())
153
+ normal_pred_ls.append(normal_pred_raw.detach().clone())
154
+
155
+ depth_preds = torch.concat(depth_pred_ls, axis=0).squeeze()
156
+ normal_preds = torch.concat(normal_pred_ls, axis=0).squeeze()
157
+ torch.cuda.empty_cache() # clear vram cache for ensembling
158
+
159
+ # ----------------- Test-time ensembling -----------------
160
+ if ensemble_size > 1:
161
+ depth_pred, pred_uncert = ensemble_depths(
162
+ depth_preds, **(ensemble_kwargs or {})
163
+ )
164
+ normal_pred = ensemble_normals(normal_preds)
165
+ else:
166
+ depth_pred = depth_preds
167
+ normal_pred = normal_preds
168
+ pred_uncert = None
169
+
170
+ # ----------------- Post processing -----------------
171
+ # Scale prediction to [0, 1]
172
+ min_d = torch.min(depth_pred)
173
+ max_d = torch.max(depth_pred)
174
+ depth_pred = (depth_pred - min_d) / (max_d - min_d)
175
+
176
+ # Convert to numpy
177
+ depth_pred = depth_pred.cpu().numpy().astype(np.float32)
178
+ normal_pred = normal_pred.cpu().numpy().astype(np.float32)
179
+
180
+ # Resize back to original resolution
181
+ if match_input_res:
182
+ pred_img = Image.fromarray(depth_pred)
183
+ pred_img = pred_img.resize(input_size)
184
+ depth_pred = np.asarray(pred_img)
185
+ normal_pred = cv2.resize(chw2hwc(normal_pred), input_size, interpolation = cv2.INTER_NEAREST)
186
+
187
+ # Clip output range: current size is the original size
188
+ depth_pred = depth_pred.clip(0, 1)
189
+ normal_pred = normal_pred.clip(-1, 1)
190
+
191
+ # Colorize
192
+ depth_colored = colorize_depth_maps(
193
+ depth_pred, 0, 1, cmap=color_map
194
+ ).squeeze() # [3, H, W], value in (0, 1)
195
+ depth_colored = (depth_colored * 255).astype(np.uint8)
196
+ depth_colored_hwc = chw2hwc(depth_colored)
197
+ depth_colored_img = Image.fromarray(depth_colored_hwc)
198
+
199
+ normal_colored = ((normal_pred + 1)/2 * 255).astype(np.uint8)
200
+ normal_colored_img = Image.fromarray(normal_colored)
201
+
202
+ return DepthNormalPipelineOutput(
203
+ depth_np = depth_pred,
204
+ depth_colored = depth_colored_img,
205
+ normal_np = normal_pred,
206
+ normal_colored = normal_colored_img,
207
+ uncertainty=pred_uncert,
208
+ )
209
+
210
+ def __encode_img_embed(self, rgb):
211
+ """
212
+ Encode clip embeddings for img
213
+ """
214
+ clip_image_mean = torch.as_tensor(self.feature_extractor.image_mean)[:,None,None].to(device=self.device, dtype=self.dtype)
215
+ clip_image_std = torch.as_tensor(self.feature_extractor.image_std)[:,None,None].to(device=self.device, dtype=self.dtype)
216
+
217
+ img_in_proc = TF.resize((rgb +1)/2,
218
+ (self.feature_extractor.crop_size['height'], self.feature_extractor.crop_size['width']),
219
+ interpolation=InterpolationMode.BICUBIC,
220
+ antialias=True
221
+ )
222
+ # do the normalization in float32 to preserve precision
223
+ img_in_proc = ((img_in_proc.float() - clip_image_mean) / clip_image_std).to(self.dtype)
224
+ img_embed = self.image_encoder(img_in_proc).image_embeds.unsqueeze(1).to(self.dtype)
225
+
226
+ self.img_embed = img_embed
227
+
228
+
229
+ @torch.no_grad()
230
+ def single_infer(self,input_rgb:torch.Tensor,
231
+ num_inference_steps:int,
232
+ domain:str,
233
+ show_pbar:bool,):
234
+
235
+ device = input_rgb.device
236
+
237
+ # Set timesteps: inherit from the diffuison pipeline
238
+ self.scheduler.set_timesteps(num_inference_steps, device=device) # here the numbers of the steps is only 10.
239
+ timesteps = self.scheduler.timesteps # [T]
240
+
241
+ # encode image
242
+ rgb_latent = self.encode_RGB(input_rgb)
243
+
244
+ # Initial depth map (Guassian noise)
245
+ geo_latent = torch.randn(rgb_latent.shape, device=device, dtype=self.dtype).repeat(2,1,1,1)
246
+ rgb_latent = rgb_latent.repeat(2,1,1,1)
247
+
248
+ # Batched img embedding
249
+ if self.img_embed is None:
250
+ self.__encode_img_embed(input_rgb)
251
+
252
+ batch_img_embed = self.img_embed.repeat(
253
+ (rgb_latent.shape[0], 1, 1)
254
+ ) # [B, 1, 768]
255
+
256
+ batch_img_embed = torch.cat((torch.zeros_like(batch_img_embed), batch_img_embed), dim=0)
257
+ rgb_latent = torch.cat((rgb_latent, rgb_latent), dim=0)
258
+
259
+ # hybrid switcher
260
+ geo_class = torch.tensor([[0., 1.], [1, 0]], device=device, dtype=self.dtype)
261
+ geo_embedding = torch.cat([torch.sin(geo_class), torch.cos(geo_class)], dim=-1)
262
+
263
+ if domain == "indoor":
264
+ domain_class = torch.tensor([[1., 0., 0]], device=device, dtype=self.dtype).repeat(2,1)
265
+ elif domain == "outdoor":
266
+ domain_class = torch.tensor([[0., 1., 0]], device=device, dtype=self.dtype).repeat(2,1)
267
+ elif domain == "object":
268
+ domain_class = torch.tensor([[0., 0., 1]], device=device, dtype=self.dtype).repeat(2,1)
269
+ domain_embedding = torch.cat([torch.sin(domain_class), torch.cos(domain_class)], dim=-1)
270
+
271
+ class_embedding = torch.cat((geo_embedding, domain_embedding), dim=-1)
272
+
273
+ # Denoising loop
274
+ if show_pbar:
275
+ iterable = tqdm(
276
+ enumerate(timesteps),
277
+ total=len(timesteps),
278
+ leave=False,
279
+ desc=" " * 4 + "Diffusion denoising",
280
+ )
281
+ else:
282
+ iterable = enumerate(timesteps)
283
+
284
+ for i, t in iterable:
285
+ unet_input = torch.cat((rgb_latent, geo_latent.repeat(2,1,1,1)), dim=1)
286
+ # predict the noise residual
287
+ noise_pred = self.unet(unet_input, t.repeat(4), encoder_hidden_states=batch_img_embed, class_labels=class_embedding.repeat(2,1)).sample
288
+ noise_pred_uncond, noise_pred_cond = noise_pred.chunk(2)
289
+ guidance_scale = 1.
290
+ noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_cond - noise_pred_uncond)
291
+
292
+ # compute the previous noisy sample x_t -> x_t-1
293
+ geo_latent = self.scheduler.step(noise_pred, t, geo_latent).prev_sample
294
+
295
+ geo_latent = geo_latent
296
+ torch.cuda.empty_cache()
297
+
298
+ depth = self.decode_depth(geo_latent[0][None])
299
+ depth = torch.clip(depth, -1.0, 1.0)
300
+ depth = (depth + 1.0) / 2.0
301
+
302
+ normal = self.decode_normal(geo_latent[1][None])
303
+ normal /= (torch.norm(normal, p=2, dim=1, keepdim=True)+1e-5)
304
+ normal *= -1.
305
+
306
+ return depth, normal
307
+
308
+
309
+ def encode_RGB(self, rgb_in: torch.Tensor) -> torch.Tensor:
310
+ """
311
+ Encode RGB image into latent.
312
+
313
+ Args:
314
+ rgb_in (`torch.Tensor`):
315
+ Input RGB image to be encoded.
316
+
317
+ Returns:
318
+ `torch.Tensor`: Image latent.
319
+ """
320
+
321
+ # encode
322
+ h = self.vae.encoder(rgb_in)
323
+
324
+ moments = self.vae.quant_conv(h)
325
+ mean, logvar = torch.chunk(moments, 2, dim=1)
326
+ # scale latent
327
+ rgb_latent = mean * self.latent_scale_factor
328
+
329
+ return rgb_latent
330
+
331
+ def decode_depth(self, depth_latent: torch.Tensor) -> torch.Tensor:
332
+ """
333
+ Decode depth latent into depth map.
334
+
335
+ Args:
336
+ depth_latent (`torch.Tensor`):
337
+ Depth latent to be decoded.
338
+
339
+ Returns:
340
+ `torch.Tensor`: Decoded depth map.
341
+ """
342
+
343
+ # scale latent
344
+ depth_latent = depth_latent / self.latent_scale_factor
345
+ # decode
346
+ z = self.vae.post_quant_conv(depth_latent)
347
+ stacked = self.vae.decoder(z)
348
+ # mean of output channels
349
+ depth_mean = stacked.mean(dim=1, keepdim=True)
350
+ return depth_mean
351
+
352
+ def decode_normal(self, normal_latent: torch.Tensor) -> torch.Tensor:
353
+ """
354
+ Decode normal latent into normal map.
355
+
356
+ Args:
357
+ normal_latent (`torch.Tensor`):
358
+ Depth latent to be decoded.
359
+
360
+ Returns:
361
+ `torch.Tensor`: Decoded normal map.
362
+ """
363
+
364
+ # scale latent
365
+ normal_latent = normal_latent / self.latent_scale_factor
366
+ # decode
367
+ z = self.vae.post_quant_conv(normal_latent)
368
+ normal = self.vae.decoder(z)
369
+ return normal
370
+
371
+
models/depth_pipeline.py ADDED
@@ -0,0 +1,310 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # A reimplemented version in public environments by Xiao Fu and Mu Hu
2
+
3
+ from typing import Any, Dict, Union
4
+
5
+ import torch
6
+ from torch.utils.data import DataLoader, TensorDataset
7
+ import numpy as np
8
+ from tqdm.auto import tqdm
9
+ from PIL import Image
10
+ from diffusers import (
11
+ DiffusionPipeline,
12
+ DDIMScheduler,
13
+ UNet2DConditionModel,
14
+ AutoencoderKL,
15
+ )
16
+ from diffusers.utils import BaseOutput
17
+ from transformers import CLIPTextModel, CLIPTokenizer
18
+
19
+ from utils.image_util import resize_max_res,chw2hwc,colorize_depth_maps
20
+ from utils.colormap import kitti_colormap
21
+ from utils.depth_ensemble import ensemble_depths
22
+ from utils.batch_size import find_batch_size
23
+ import cv2
24
+
25
+ class DepthPipelineOutput(BaseOutput):
26
+ """
27
+ Output class for Marigold monocular depth prediction pipeline.
28
+
29
+ Args:
30
+ depth_np (`np.ndarray`):
31
+ Predicted depth map, with depth values in the range of [0, 1].
32
+ depth_colored (`PIL.Image.Image`):
33
+ Colorized depth map, with the shape of [3, H, W] and values in [0, 1].
34
+ uncertainty (`None` or `np.ndarray`):
35
+ Uncalibrated uncertainty(MAD, median absolute deviation) coming from ensembling.
36
+ """
37
+ depth_np: np.ndarray
38
+ depth_colored: Image.Image
39
+ uncertainty: Union[None, np.ndarray]
40
+
41
+ class DepthEstimationPipeline(DiffusionPipeline):
42
+ # two hyper-parameters
43
+ latent_scale_factor = 0.18215
44
+
45
+ def __init__(self,
46
+ unet:UNet2DConditionModel,
47
+ vae:AutoencoderKL,
48
+ scheduler:DDIMScheduler,
49
+ text_encoder:CLIPTextModel,
50
+ tokenizer:CLIPTokenizer,
51
+ ):
52
+ super().__init__()
53
+
54
+ self.register_modules(
55
+ unet=unet,
56
+ vae=vae,
57
+ scheduler=scheduler,
58
+ text_encoder=text_encoder,
59
+ tokenizer=tokenizer,
60
+ )
61
+ self.empty_text_embed = None
62
+
63
+ @torch.no_grad()
64
+ def __call__(self,
65
+ input_image:Image,
66
+ denosing_steps: int =10,
67
+ ensemble_size: int =10,
68
+ processing_res: int = 768,
69
+ match_input_res:bool =True,
70
+ batch_size:int = 0,
71
+ color_map: str="Spectral",
72
+ show_progress_bar:bool = True,
73
+ ensemble_kwargs: Dict = None,
74
+ ) -> DepthPipelineOutput:
75
+
76
+ # inherit from thea Diffusion Pipeline
77
+ device = self.device
78
+ input_size = input_image.size
79
+
80
+ # adjust the input resolution.
81
+ if not match_input_res:
82
+ assert (
83
+ processing_res is not None
84
+ )," Value Error: `resize_output_back` is only valid with "
85
+
86
+ assert processing_res >=0
87
+ assert denosing_steps >=1
88
+ assert ensemble_size >=1
89
+
90
+ # --------------- Image Processing ------------------------
91
+ # Resize image
92
+ if processing_res >0:
93
+ input_image = resize_max_res(
94
+ input_image, max_edge_resolution=processing_res
95
+ ) # resize image: for kitti is 231, 768
96
+
97
+ # Convert the image to RGB, to 1. reomve the alpha channel.
98
+ input_image = input_image.convert("RGB")
99
+ image = np.array(input_image)
100
+
101
+ # Normalize RGB Values.
102
+ rgb = np.transpose(image,(2,0,1))
103
+ rgb_norm = rgb / 255.0 * 2.0 - 1.0 # [0, 255] -> [-1, 1]
104
+ rgb_norm = torch.from_numpy(rgb_norm).to(self.dtype)
105
+ rgb_norm = rgb_norm.to(device)
106
+
107
+ assert rgb_norm.min() >= -1.0 and rgb_norm.max() <= 1.0
108
+
109
+ # ----------------- predicting depth -----------------
110
+ duplicated_rgb = torch.stack([rgb_norm] * ensemble_size)
111
+ single_rgb_dataset = TensorDataset(duplicated_rgb)
112
+
113
+ # find the batch size
114
+ if batch_size>0:
115
+ _bs = batch_size
116
+ else:
117
+ _bs = 1
118
+
119
+ single_rgb_loader = DataLoader(single_rgb_dataset, batch_size=_bs, shuffle=False)
120
+
121
+ # predicted the depth
122
+ depth_pred_ls = []
123
+
124
+ if show_progress_bar:
125
+ iterable_bar = tqdm(
126
+ single_rgb_loader, desc=" " * 2 + "Inference batches", leave=False
127
+ )
128
+ else:
129
+ iterable_bar = single_rgb_loader
130
+
131
+ for batch in iterable_bar:
132
+ (batched_image, )= batch # here the image is still around 0-1
133
+
134
+ depth_pred_raw = self.single_infer(
135
+ input_rgb=batched_image,
136
+ num_inference_steps=denosing_steps,
137
+ show_pbar=show_progress_bar,
138
+ )
139
+ depth_pred_ls.append(depth_pred_raw.detach().clone())
140
+
141
+ depth_preds = torch.concat(depth_pred_ls, axis=0).squeeze() #(10,224,768)
142
+ torch.cuda.empty_cache() # clear vram cache for ensembling
143
+
144
+ # ----------------- Test-time ensembling -----------------
145
+ if ensemble_size > 1:
146
+ depth_pred, pred_uncert = ensemble_depths(
147
+ depth_preds, **(ensemble_kwargs or {})
148
+ )
149
+ else:
150
+ depth_pred = depth_preds
151
+ pred_uncert = None
152
+
153
+ # ----------------- Post processing -----------------
154
+ # Scale prediction to [0, 1]
155
+ min_d = torch.min(depth_pred)
156
+ max_d = torch.max(depth_pred)
157
+ depth_pred = (depth_pred - min_d) / (max_d - min_d)
158
+
159
+ # Convert to numpy
160
+ depth_pred = depth_pred.cpu().numpy().astype(np.float32)
161
+
162
+ # Resize back to original resolution
163
+ if match_input_res:
164
+ pred_img = Image.fromarray(depth_pred)
165
+ pred_img = pred_img.resize(input_size)
166
+ depth_pred = np.asarray(pred_img)
167
+
168
+ # Clip output range: current size is the original size
169
+ depth_pred = depth_pred.clip(0, 1)
170
+
171
+ # colorization using the KITTI Color Plan.
172
+ depth_pred_vis = depth_pred * 70
173
+ disp_vis = 400/(depth_pred_vis+1e-3)
174
+ disp_vis = disp_vis.clip(0,500)
175
+
176
+ depth_color_pred = kitti_colormap(disp_vis)
177
+
178
+ # Colorize
179
+ depth_colored = colorize_depth_maps(
180
+ depth_pred, 0, 1, cmap=color_map
181
+ ).squeeze() # [3, H, W], value in (0, 1)
182
+ depth_colored = (depth_colored * 255).astype(np.uint8)
183
+ depth_colored_hwc = chw2hwc(depth_colored)
184
+ depth_colored_img = Image.fromarray(depth_colored_hwc)
185
+
186
+ return DepthPipelineOutput(
187
+ depth_np = depth_pred,
188
+ depth_colored = depth_colored_img,
189
+ uncertainty=pred_uncert,
190
+ )
191
+
192
+ def __encode_empty_text(self):
193
+ """
194
+ Encode text embedding for empty prompt
195
+ """
196
+ prompt = ""
197
+ text_inputs = self.tokenizer(
198
+ prompt,
199
+ padding="do_not_pad",
200
+ max_length=self.tokenizer.model_max_length,
201
+ truncation=True,
202
+ return_tensors="pt",
203
+ )
204
+ text_input_ids = text_inputs.input_ids.to(self.text_encoder.device) #[1,2]
205
+ # print(text_input_ids.shape)
206
+ self.empty_text_embed = self.text_encoder(text_input_ids)[0].to(self.dtype) #[1,2,1024]
207
+
208
+
209
+ @torch.no_grad()
210
+ def single_infer(self,input_rgb:torch.Tensor,
211
+ num_inference_steps:int,
212
+ show_pbar:bool,):
213
+
214
+ device = input_rgb.device
215
+
216
+ # Set timesteps: inherit from the diffuison pipeline
217
+ self.scheduler.set_timesteps(num_inference_steps, device=device) # here the numbers of the steps is only 10.
218
+ timesteps = self.scheduler.timesteps # [T]
219
+
220
+ # encode image
221
+ rgb_latent = self.encode_RGB(input_rgb) # 1/8 Resolution with a channel nums of 4.
222
+
223
+ # Initial depth map (Guassian noise)
224
+ depth_latent = torch.randn(rgb_latent.shape, device=device, dtype=self.dtype) # [B, 4, H/8, W/8]
225
+
226
+ # Batched empty text embedding
227
+ if self.empty_text_embed is None:
228
+ self.__encode_empty_text()
229
+
230
+ batch_empty_text_embed = self.empty_text_embed.repeat(
231
+ (rgb_latent.shape[0], 1, 1)
232
+ ) # [B, 2, 1024]
233
+
234
+
235
+ # Denoising loop
236
+ if show_pbar:
237
+ iterable = tqdm(
238
+ enumerate(timesteps),
239
+ total=len(timesteps),
240
+ leave=False,
241
+ desc=" " * 4 + "Diffusion denoising",
242
+ )
243
+ else:
244
+ iterable = enumerate(timesteps)
245
+
246
+ for i, t in iterable:
247
+ unet_input = torch.cat([rgb_latent, depth_latent], dim=1)
248
+
249
+ # predict the noise residual
250
+ noise_pred = self.unet(
251
+ unet_input, t, encoder_hidden_states=batch_empty_text_embed
252
+ ).sample # [B, 4, h, w]
253
+
254
+ # compute the previous noisy sample x_t -> x_t-1
255
+ depth_latent = self.scheduler.step(noise_pred, t, depth_latent).prev_sample
256
+
257
+ torch.cuda.empty_cache()
258
+
259
+ depth = self.decode_depth(depth_latent)
260
+
261
+ depth = torch.clip(depth, -1.0, 1.0)
262
+ depth = (depth + 1.0) / 2.0
263
+
264
+ return depth
265
+
266
+
267
+ def encode_RGB(self, rgb_in: torch.Tensor) -> torch.Tensor:
268
+ """
269
+ Encode RGB image into latent.
270
+
271
+ Args:
272
+ rgb_in (`torch.Tensor`):
273
+ Input RGB image to be encoded.
274
+
275
+ Returns:
276
+ `torch.Tensor`: Image latent.
277
+ """
278
+
279
+ # encode
280
+ h = self.vae.encoder(rgb_in)
281
+
282
+ moments = self.vae.quant_conv(h)
283
+ mean, logvar = torch.chunk(moments, 2, dim=1)
284
+ # scale latent
285
+ rgb_latent = mean * self.latent_scale_factor
286
+
287
+ return rgb_latent
288
+
289
+ def decode_depth(self, depth_latent: torch.Tensor) -> torch.Tensor:
290
+ """
291
+ Decode depth latent into depth map.
292
+
293
+ Args:
294
+ depth_latent (`torch.Tensor`):
295
+ Depth latent to be decoded.
296
+
297
+ Returns:
298
+ `torch.Tensor`: Decoded depth map.
299
+ """
300
+
301
+ # scale latent
302
+ depth_latent = depth_latent / self.latent_scale_factor
303
+ # decode
304
+ z = self.vae.post_quant_conv(depth_latent)
305
+ stacked = self.vae.decoder(z)
306
+ # mean of output channels
307
+
308
+ depth_mean = stacked.mean(dim=1, keepdim=True)
309
+ return depth_mean
310
+
models/transformer_2d.py ADDED
@@ -0,0 +1,463 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2023 The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ # Some modifications are reimplemented in public environments by Xiao Fu and Mu Hu
16
+
17
+ from dataclasses import dataclass
18
+ from typing import Any, Dict, Optional
19
+
20
+ import torch
21
+ import torch.nn.functional as F
22
+ from torch import nn
23
+
24
+ from diffusers.configuration_utils import ConfigMixin, register_to_config
25
+ from diffusers.models.embeddings import ImagePositionalEmbeddings
26
+ from diffusers.utils import USE_PEFT_BACKEND, BaseOutput, deprecate, is_torch_version
27
+ from models.attention import BasicTransformerBlock
28
+ from diffusers.models.embeddings import PatchEmbed, PixArtAlphaTextProjection
29
+ from diffusers.models.lora import LoRACompatibleConv, LoRACompatibleLinear
30
+ from diffusers.models.modeling_utils import ModelMixin
31
+ from diffusers.models.normalization import AdaLayerNormSingle
32
+
33
+
34
+ @dataclass
35
+ class Transformer2DModelOutput(BaseOutput):
36
+ """
37
+ The output of [`Transformer2DModel`].
38
+
39
+ Args:
40
+ sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` or `(batch size, num_vector_embeds - 1, num_latent_pixels)` if [`Transformer2DModel`] is discrete):
41
+ The hidden states output conditioned on the `encoder_hidden_states` input. If discrete, returns probability
42
+ distributions for the unnoised latent pixels.
43
+ """
44
+
45
+ sample: torch.FloatTensor
46
+
47
+
48
+ class Transformer2DModel(ModelMixin, ConfigMixin):
49
+ """
50
+ A 2D Transformer model for image-like data.
51
+
52
+ Parameters:
53
+ num_attention_heads (`int`, *optional*, defaults to 16): The number of heads to use for multi-head attention.
54
+ attention_head_dim (`int`, *optional*, defaults to 88): The number of channels in each head.
55
+ in_channels (`int`, *optional*):
56
+ The number of channels in the input and output (specify if the input is **continuous**).
57
+ num_layers (`int`, *optional*, defaults to 1): The number of layers of Transformer blocks to use.
58
+ dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
59
+ cross_attention_dim (`int`, *optional*): The number of `encoder_hidden_states` dimensions to use.
60
+ sample_size (`int`, *optional*): The width of the latent images (specify if the input is **discrete**).
61
+ This is fixed during training since it is used to learn a number of position embeddings.
62
+ num_vector_embeds (`int`, *optional*):
63
+ The number of classes of the vector embeddings of the latent pixels (specify if the input is **discrete**).
64
+ Includes the class for the masked latent pixel.
65
+ activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to use in feed-forward.
66
+ num_embeds_ada_norm ( `int`, *optional*):
67
+ The number of diffusion steps used during training. Pass if at least one of the norm_layers is
68
+ `AdaLayerNorm`. This is fixed during training since it is used to learn a number of embeddings that are
69
+ added to the hidden states.
70
+
71
+ During inference, you can denoise for up to but not more steps than `num_embeds_ada_norm`.
72
+ attention_bias (`bool`, *optional*):
73
+ Configure if the `TransformerBlocks` attention should contain a bias parameter.
74
+ """
75
+
76
+ _supports_gradient_checkpointing = True
77
+
78
+ @register_to_config
79
+ def __init__(
80
+ self,
81
+ num_attention_heads: int = 16,
82
+ attention_head_dim: int = 88,
83
+ in_channels: Optional[int] = None,
84
+ out_channels: Optional[int] = None,
85
+ num_layers: int = 1,
86
+ dropout: float = 0.0,
87
+ norm_num_groups: int = 32,
88
+ cross_attention_dim: Optional[int] = None,
89
+ attention_bias: bool = False,
90
+ sample_size: Optional[int] = None,
91
+ num_vector_embeds: Optional[int] = None,
92
+ patch_size: Optional[int] = None,
93
+ activation_fn: str = "geglu",
94
+ num_embeds_ada_norm: Optional[int] = None,
95
+ use_linear_projection: bool = False,
96
+ only_cross_attention: bool = False,
97
+ double_self_attention: bool = False,
98
+ upcast_attention: bool = False,
99
+ norm_type: str = "layer_norm",
100
+ norm_elementwise_affine: bool = True,
101
+ norm_eps: float = 1e-5,
102
+ attention_type: str = "default",
103
+ caption_channels: int = None,
104
+ ):
105
+ super().__init__()
106
+ self.use_linear_projection = use_linear_projection
107
+ self.num_attention_heads = num_attention_heads
108
+ self.attention_head_dim = attention_head_dim
109
+ inner_dim = num_attention_heads * attention_head_dim
110
+
111
+ conv_cls = nn.Conv2d if USE_PEFT_BACKEND else LoRACompatibleConv
112
+ linear_cls = nn.Linear if USE_PEFT_BACKEND else LoRACompatibleLinear
113
+
114
+ # 1. Transformer2DModel can process both standard continuous images of shape `(batch_size, num_channels, width, height)` as well as quantized image embeddings of shape `(batch_size, num_image_vectors)`
115
+ # Define whether input is continuous or discrete depending on configuration
116
+ self.is_input_continuous = (in_channels is not None) and (patch_size is None)
117
+ self.is_input_vectorized = num_vector_embeds is not None
118
+ self.is_input_patches = in_channels is not None and patch_size is not None
119
+
120
+ if norm_type == "layer_norm" and num_embeds_ada_norm is not None:
121
+ deprecation_message = (
122
+ f"The configuration file of this model: {self.__class__} is outdated. `norm_type` is either not set or"
123
+ " incorrectly set to `'layer_norm'`.Make sure to set `norm_type` to `'ada_norm'` in the config."
124
+ " Please make sure to update the config accordingly as leaving `norm_type` might led to incorrect"
125
+ " results in future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it"
126
+ " would be very nice if you could open a Pull request for the `transformer/config.json` file"
127
+ )
128
+ deprecate("norm_type!=num_embeds_ada_norm", "1.0.0", deprecation_message, standard_warn=False)
129
+ norm_type = "ada_norm"
130
+
131
+ if self.is_input_continuous and self.is_input_vectorized:
132
+ raise ValueError(
133
+ f"Cannot define both `in_channels`: {in_channels} and `num_vector_embeds`: {num_vector_embeds}. Make"
134
+ " sure that either `in_channels` or `num_vector_embeds` is None."
135
+ )
136
+ elif self.is_input_vectorized and self.is_input_patches:
137
+ raise ValueError(
138
+ f"Cannot define both `num_vector_embeds`: {num_vector_embeds} and `patch_size`: {patch_size}. Make"
139
+ " sure that either `num_vector_embeds` or `num_patches` is None."
140
+ )
141
+ elif not self.is_input_continuous and not self.is_input_vectorized and not self.is_input_patches:
142
+ raise ValueError(
143
+ f"Has to define `in_channels`: {in_channels}, `num_vector_embeds`: {num_vector_embeds}, or patch_size:"
144
+ f" {patch_size}. Make sure that `in_channels`, `num_vector_embeds` or `num_patches` is not None."
145
+ )
146
+
147
+ # 2. Define input layers
148
+ if self.is_input_continuous:
149
+ self.in_channels = in_channels
150
+
151
+ self.norm = torch.nn.GroupNorm(num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True)
152
+ if use_linear_projection:
153
+ self.proj_in = linear_cls(in_channels, inner_dim)
154
+ else:
155
+ self.proj_in = conv_cls(in_channels, inner_dim, kernel_size=1, stride=1, padding=0)
156
+ elif self.is_input_vectorized:
157
+ assert sample_size is not None, "Transformer2DModel over discrete input must provide sample_size"
158
+ assert num_vector_embeds is not None, "Transformer2DModel over discrete input must provide num_embed"
159
+
160
+ self.height = sample_size
161
+ self.width = sample_size
162
+ self.num_vector_embeds = num_vector_embeds
163
+ self.num_latent_pixels = self.height * self.width
164
+
165
+ self.latent_image_embedding = ImagePositionalEmbeddings(
166
+ num_embed=num_vector_embeds, embed_dim=inner_dim, height=self.height, width=self.width
167
+ )
168
+ elif self.is_input_patches:
169
+ assert sample_size is not None, "Transformer2DModel over patched input must provide sample_size"
170
+
171
+ self.height = sample_size
172
+ self.width = sample_size
173
+
174
+ self.patch_size = patch_size
175
+ interpolation_scale = self.config.sample_size // 64 # => 64 (= 512 pixart) has interpolation scale 1
176
+ interpolation_scale = max(interpolation_scale, 1)
177
+ self.pos_embed = PatchEmbed(
178
+ height=sample_size,
179
+ width=sample_size,
180
+ patch_size=patch_size,
181
+ in_channels=in_channels,
182
+ embed_dim=inner_dim,
183
+ interpolation_scale=interpolation_scale,
184
+ )
185
+
186
+ # 3. Define transformers blocks
187
+ self.transformer_blocks = nn.ModuleList(
188
+ [
189
+ BasicTransformerBlock(
190
+ inner_dim,
191
+ num_attention_heads,
192
+ attention_head_dim,
193
+ dropout=dropout,
194
+ cross_attention_dim=cross_attention_dim,
195
+ activation_fn=activation_fn,
196
+ num_embeds_ada_norm=num_embeds_ada_norm,
197
+ attention_bias=attention_bias,
198
+ only_cross_attention=only_cross_attention,
199
+ double_self_attention=double_self_attention,
200
+ upcast_attention=upcast_attention,
201
+ norm_type=norm_type,
202
+ norm_elementwise_affine=norm_elementwise_affine,
203
+ norm_eps=norm_eps,
204
+ attention_type=attention_type,
205
+ )
206
+ for d in range(num_layers)
207
+ ]
208
+ )
209
+
210
+ # 4. Define output layers
211
+ self.out_channels = in_channels if out_channels is None else out_channels
212
+ if self.is_input_continuous:
213
+ # TODO: should use out_channels for continuous projections
214
+ if use_linear_projection:
215
+ self.proj_out = linear_cls(inner_dim, in_channels)
216
+ else:
217
+ self.proj_out = conv_cls(inner_dim, in_channels, kernel_size=1, stride=1, padding=0)
218
+ elif self.is_input_vectorized:
219
+ self.norm_out = nn.LayerNorm(inner_dim)
220
+ self.out = nn.Linear(inner_dim, self.num_vector_embeds - 1)
221
+ elif self.is_input_patches and norm_type != "ada_norm_single":
222
+ self.norm_out = nn.LayerNorm(inner_dim, elementwise_affine=False, eps=1e-6)
223
+ self.proj_out_1 = nn.Linear(inner_dim, 2 * inner_dim)
224
+ self.proj_out_2 = nn.Linear(inner_dim, patch_size * patch_size * self.out_channels)
225
+ elif self.is_input_patches and norm_type == "ada_norm_single":
226
+ self.norm_out = nn.LayerNorm(inner_dim, elementwise_affine=False, eps=1e-6)
227
+ self.scale_shift_table = nn.Parameter(torch.randn(2, inner_dim) / inner_dim**0.5)
228
+ self.proj_out = nn.Linear(inner_dim, patch_size * patch_size * self.out_channels)
229
+
230
+ # 5. PixArt-Alpha blocks.
231
+ self.adaln_single = None
232
+ self.use_additional_conditions = False
233
+ if norm_type == "ada_norm_single":
234
+ self.use_additional_conditions = self.config.sample_size == 128
235
+ # TODO(Sayak, PVP) clean this, for now we use sample size to determine whether to use
236
+ # additional conditions until we find better name
237
+ self.adaln_single = AdaLayerNormSingle(inner_dim, use_additional_conditions=self.use_additional_conditions)
238
+
239
+ self.caption_projection = None
240
+ if caption_channels is not None:
241
+ self.caption_projection = PixArtAlphaTextProjection(in_features=caption_channels, hidden_size=inner_dim)
242
+
243
+ self.gradient_checkpointing = False
244
+
245
+ def _set_gradient_checkpointing(self, module, value=False):
246
+ if hasattr(module, "gradient_checkpointing"):
247
+ module.gradient_checkpointing = value
248
+
249
+ def forward(
250
+ self,
251
+ hidden_states: torch.Tensor,
252
+ encoder_hidden_states: Optional[torch.Tensor] = None,
253
+ timestep: Optional[torch.LongTensor] = None,
254
+ added_cond_kwargs: Dict[str, torch.Tensor] = None,
255
+ class_labels: Optional[torch.LongTensor] = None,
256
+ cross_attention_kwargs: Dict[str, Any] = None,
257
+ attention_mask: Optional[torch.Tensor] = None,
258
+ encoder_attention_mask: Optional[torch.Tensor] = None,
259
+ return_dict: bool = True,
260
+ ):
261
+ """
262
+ The [`Transformer2DModel`] forward method.
263
+
264
+ Args:
265
+ hidden_states (`torch.LongTensor` of shape `(batch size, num latent pixels)` if discrete, `torch.FloatTensor` of shape `(batch size, channel, height, width)` if continuous):
266
+ Input `hidden_states`.
267
+ encoder_hidden_states ( `torch.FloatTensor` of shape `(batch size, sequence len, embed dims)`, *optional*):
268
+ Conditional embeddings for cross attention layer. If not given, cross-attention defaults to
269
+ self-attention.
270
+ timestep ( `torch.LongTensor`, *optional*):
271
+ Used to indicate denoising step. Optional timestep to be applied as an embedding in `AdaLayerNorm`.
272
+ class_labels ( `torch.LongTensor` of shape `(batch size, num classes)`, *optional*):
273
+ Used to indicate class labels conditioning. Optional class labels to be applied as an embedding in
274
+ `AdaLayerZeroNorm`.
275
+ cross_attention_kwargs ( `Dict[str, Any]`, *optional*):
276
+ A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
277
+ `self.processor` in
278
+ [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
279
+ attention_mask ( `torch.Tensor`, *optional*):
280
+ An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask
281
+ is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large
282
+ negative values to the attention scores corresponding to "discard" tokens.
283
+ encoder_attention_mask ( `torch.Tensor`, *optional*):
284
+ Cross-attention mask applied to `encoder_hidden_states`. Two formats supported:
285
+
286
+ * Mask `(batch, sequence_length)` True = keep, False = discard.
287
+ * Bias `(batch, 1, sequence_length)` 0 = keep, -10000 = discard.
288
+
289
+ If `ndim == 2`: will be interpreted as a mask, then converted into a bias consistent with the format
290
+ above. This bias will be added to the cross-attention scores.
291
+ return_dict (`bool`, *optional*, defaults to `True`):
292
+ Whether or not to return a [`~models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain
293
+ tuple.
294
+
295
+ Returns:
296
+ If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
297
+ `tuple` where the first element is the sample tensor.
298
+ """
299
+ # ensure attention_mask is a bias, and give it a singleton query_tokens dimension.
300
+ # we may have done this conversion already, e.g. if we came here via UNet2DConditionModel#forward.
301
+ # we can tell by counting dims; if ndim == 2: it's a mask rather than a bias.
302
+ # expects mask of shape:
303
+ # [batch, key_tokens]
304
+ # adds singleton query_tokens dimension:
305
+ # [batch, 1, key_tokens]
306
+ # this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes:
307
+ # [batch, heads, query_tokens, key_tokens] (e.g. torch sdp attn)
308
+ # [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn)
309
+
310
+ if attention_mask is not None and attention_mask.ndim == 2:
311
+ # assume that mask is expressed as:
312
+ # (1 = keep, 0 = discard)
313
+ # convert mask into a bias that can be added to attention scores:
314
+ # (keep = +0, discard = -10000.0)
315
+ attention_mask = (1 - attention_mask.to(hidden_states.dtype)) * -10000.0
316
+ attention_mask = attention_mask.unsqueeze(1)
317
+
318
+ # convert encoder_attention_mask to a bias the same way we do for attention_mask
319
+ if encoder_attention_mask is not None and encoder_attention_mask.ndim == 2:
320
+ encoder_attention_mask = (1 - encoder_attention_mask.to(hidden_states.dtype)) * -10000.0
321
+ encoder_attention_mask = encoder_attention_mask.unsqueeze(1)
322
+
323
+ # Retrieve lora scale.
324
+ lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0
325
+
326
+ # 1. Input
327
+ if self.is_input_continuous:
328
+ batch, _, height, width = hidden_states.shape
329
+ residual = hidden_states
330
+
331
+ hidden_states = self.norm(hidden_states)
332
+ if not self.use_linear_projection:
333
+ hidden_states = (
334
+ self.proj_in(hidden_states, scale=lora_scale)
335
+ if not USE_PEFT_BACKEND
336
+ else self.proj_in(hidden_states)
337
+ )
338
+ inner_dim = hidden_states.shape[1]
339
+ hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * width, inner_dim)
340
+ else:
341
+ inner_dim = hidden_states.shape[1]
342
+ hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * width, inner_dim)
343
+ hidden_states = (
344
+ self.proj_in(hidden_states, scale=lora_scale)
345
+ if not USE_PEFT_BACKEND
346
+ else self.proj_in(hidden_states)
347
+ )
348
+
349
+ elif self.is_input_vectorized:
350
+ hidden_states = self.latent_image_embedding(hidden_states)
351
+ elif self.is_input_patches:
352
+ height, width = hidden_states.shape[-2] // self.patch_size, hidden_states.shape[-1] // self.patch_size
353
+ hidden_states = self.pos_embed(hidden_states)
354
+
355
+ if self.adaln_single is not None:
356
+ if self.use_additional_conditions and added_cond_kwargs is None:
357
+ raise ValueError(
358
+ "`added_cond_kwargs` cannot be None when using additional conditions for `adaln_single`."
359
+ )
360
+ batch_size = hidden_states.shape[0]
361
+ timestep, embedded_timestep = self.adaln_single(
362
+ timestep, added_cond_kwargs, batch_size=batch_size, hidden_dtype=hidden_states.dtype
363
+ )
364
+
365
+ # 2. Blocks
366
+ if self.caption_projection is not None:
367
+ batch_size = hidden_states.shape[0]
368
+ encoder_hidden_states = self.caption_projection(encoder_hidden_states)
369
+ encoder_hidden_states = encoder_hidden_states.view(batch_size, -1, hidden_states.shape[-1])
370
+
371
+ for block in self.transformer_blocks:
372
+ if self.training and self.gradient_checkpointing:
373
+
374
+ def create_custom_forward(module, return_dict=None):
375
+ def custom_forward(*inputs):
376
+ if return_dict is not None:
377
+ return module(*inputs, return_dict=return_dict)
378
+ else:
379
+ return module(*inputs)
380
+
381
+ return custom_forward
382
+
383
+ ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
384
+ hidden_states = torch.utils.checkpoint.checkpoint(
385
+ create_custom_forward(block),
386
+ hidden_states,
387
+ attention_mask,
388
+ encoder_hidden_states,
389
+ encoder_attention_mask,
390
+ timestep,
391
+ cross_attention_kwargs,
392
+ class_labels,
393
+ **ckpt_kwargs,
394
+ )
395
+ else:
396
+ hidden_states = block(
397
+ hidden_states,
398
+ attention_mask=attention_mask,
399
+ encoder_hidden_states=encoder_hidden_states,
400
+ encoder_attention_mask=encoder_attention_mask,
401
+ timestep=timestep,
402
+ cross_attention_kwargs=cross_attention_kwargs,
403
+ class_labels=class_labels,
404
+ )
405
+
406
+ # 3. Output
407
+ if self.is_input_continuous:
408
+ if not self.use_linear_projection:
409
+ hidden_states = hidden_states.reshape(batch, height, width, inner_dim).permute(0, 3, 1, 2).contiguous()
410
+ hidden_states = (
411
+ self.proj_out(hidden_states, scale=lora_scale)
412
+ if not USE_PEFT_BACKEND
413
+ else self.proj_out(hidden_states)
414
+ )
415
+ else:
416
+ hidden_states = (
417
+ self.proj_out(hidden_states, scale=lora_scale)
418
+ if not USE_PEFT_BACKEND
419
+ else self.proj_out(hidden_states)
420
+ )
421
+ hidden_states = hidden_states.reshape(batch, height, width, inner_dim).permute(0, 3, 1, 2).contiguous()
422
+
423
+ output = hidden_states + residual
424
+ elif self.is_input_vectorized:
425
+ hidden_states = self.norm_out(hidden_states)
426
+ logits = self.out(hidden_states)
427
+ # (batch, self.num_vector_embeds - 1, self.num_latent_pixels)
428
+ logits = logits.permute(0, 2, 1)
429
+
430
+ # log(p(x_0))
431
+ output = F.log_softmax(logits.double(), dim=1).float()
432
+
433
+ if self.is_input_patches:
434
+ if self.config.norm_type != "ada_norm_single":
435
+ conditioning = self.transformer_blocks[0].norm1.emb(
436
+ timestep, class_labels, hidden_dtype=hidden_states.dtype
437
+ )
438
+ shift, scale = self.proj_out_1(F.silu(conditioning)).chunk(2, dim=1)
439
+ hidden_states = self.norm_out(hidden_states) * (1 + scale[:, None]) + shift[:, None]
440
+ hidden_states = self.proj_out_2(hidden_states)
441
+ elif self.config.norm_type == "ada_norm_single":
442
+ shift, scale = (self.scale_shift_table[None] + embedded_timestep[:, None]).chunk(2, dim=1)
443
+ hidden_states = self.norm_out(hidden_states)
444
+ # Modulation
445
+ hidden_states = hidden_states * (1 + scale) + shift
446
+ hidden_states = self.proj_out(hidden_states)
447
+ hidden_states = hidden_states.squeeze(1)
448
+
449
+ # unpatchify
450
+ if self.adaln_single is None:
451
+ height = width = int(hidden_states.shape[1] ** 0.5)
452
+ hidden_states = hidden_states.reshape(
453
+ shape=(-1, height, width, self.patch_size, self.patch_size, self.out_channels)
454
+ )
455
+ hidden_states = torch.einsum("nhwpqc->nchpwq", hidden_states)
456
+ output = hidden_states.reshape(
457
+ shape=(-1, self.out_channels, height * self.patch_size, width * self.patch_size)
458
+ )
459
+
460
+ if not return_dict:
461
+ return (output,)
462
+
463
+ return Transformer2DModelOutput(sample=output)
models/unet_2d_blocks.py ADDED
The diff for this file is too large to render. See raw diff
 
models/unet_2d_condition.py ADDED
@@ -0,0 +1,1214 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2023 The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ # Some modifications are reimplemented in public environments by Xiao Fu and Mu Hu
16
+
17
+ from dataclasses import dataclass
18
+ from typing import Any, Dict, List, Optional, Tuple, Union
19
+
20
+ import torch
21
+ import torch.nn as nn
22
+ import torch.utils.checkpoint
23
+
24
+ from diffusers.configuration_utils import ConfigMixin, register_to_config
25
+ from diffusers.loaders import UNet2DConditionLoadersMixin
26
+ from diffusers.utils import USE_PEFT_BACKEND, BaseOutput, deprecate, logging, scale_lora_layers, unscale_lora_layers
27
+ from diffusers.models.activations import get_activation
28
+ from diffusers.models.attention_processor import (
29
+ ADDED_KV_ATTENTION_PROCESSORS,
30
+ CROSS_ATTENTION_PROCESSORS,
31
+ Attention,
32
+ AttentionProcessor,
33
+ AttnAddedKVProcessor,
34
+ AttnProcessor,
35
+ )
36
+ from diffusers.models.embeddings import (
37
+ GaussianFourierProjection,
38
+ ImageHintTimeEmbedding,
39
+ ImageProjection,
40
+ ImageTimeEmbedding,
41
+ PositionNet,
42
+ TextImageProjection,
43
+ TextImageTimeEmbedding,
44
+ TextTimeEmbedding,
45
+ TimestepEmbedding,
46
+ Timesteps,
47
+ )
48
+ from diffusers.models.modeling_utils import ModelMixin
49
+
50
+ from models.unet_2d_blocks import (
51
+ UNetMidBlock2D,
52
+ UNetMidBlock2DCrossAttn,
53
+ UNetMidBlock2DSimpleCrossAttn,
54
+ get_down_block,
55
+ get_up_block,
56
+ )
57
+
58
+
59
+ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
60
+
61
+
62
+ @dataclass
63
+ class UNet2DConditionOutput(BaseOutput):
64
+ """
65
+ The output of [`UNet2DConditionModel`].
66
+
67
+ Args:
68
+ sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
69
+ The hidden states output conditioned on `encoder_hidden_states` input. Output of last layer of model.
70
+ """
71
+
72
+ sample: torch.FloatTensor = None
73
+
74
+
75
+ class UNet2DConditionModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin):
76
+ r"""
77
+ A conditional 2D UNet model that takes a noisy sample, conditional state, and a timestep and returns a sample
78
+ shaped output.
79
+
80
+ This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented
81
+ for all models (such as downloading or saving).
82
+
83
+ Parameters:
84
+ sample_size (`int` or `Tuple[int, int]`, *optional*, defaults to `None`):
85
+ Height and width of input/output sample.
86
+ in_channels (`int`, *optional*, defaults to 4): Number of channels in the input sample.
87
+ out_channels (`int`, *optional*, defaults to 4): Number of channels in the output.
88
+ center_input_sample (`bool`, *optional*, defaults to `False`): Whether to center the input sample.
89
+ flip_sin_to_cos (`bool`, *optional*, defaults to `False`):
90
+ Whether to flip the sin to cos in the time embedding.
91
+ freq_shift (`int`, *optional*, defaults to 0): The frequency shift to apply to the time embedding.
92
+ down_block_types (`Tuple[str]`, *optional*, defaults to `("CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D")`):
93
+ The tuple of downsample blocks to use.
94
+ mid_block_type (`str`, *optional*, defaults to `"UNetMidBlock2DCrossAttn"`):
95
+ Block type for middle of UNet, it can be one of `UNetMidBlock2DCrossAttn`, `UNetMidBlock2D`, or
96
+ `UNetMidBlock2DSimpleCrossAttn`. If `None`, the mid block layer is skipped.
97
+ up_block_types (`Tuple[str]`, *optional*, defaults to `("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D")`):
98
+ The tuple of upsample blocks to use.
99
+ only_cross_attention(`bool` or `Tuple[bool]`, *optional*, default to `False`):
100
+ Whether to include self-attention in the basic transformer blocks, see
101
+ [`~models.attention.BasicTransformerBlock`].
102
+ block_out_channels (`Tuple[int]`, *optional*, defaults to `(320, 640, 1280, 1280)`):
103
+ The tuple of output channels for each block.
104
+ layers_per_block (`int`, *optional*, defaults to 2): The number of layers per block.
105
+ downsample_padding (`int`, *optional*, defaults to 1): The padding to use for the downsampling convolution.
106
+ mid_block_scale_factor (`float`, *optional*, defaults to 1.0): The scale factor to use for the mid block.
107
+ dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
108
+ act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use.
109
+ norm_num_groups (`int`, *optional*, defaults to 32): The number of groups to use for the normalization.
110
+ If `None`, normalization and activation layers is skipped in post-processing.
111
+ norm_eps (`float`, *optional*, defaults to 1e-5): The epsilon to use for the normalization.
112
+ cross_attention_dim (`int` or `Tuple[int]`, *optional*, defaults to 1280):
113
+ The dimension of the cross attention features.
114
+ transformer_layers_per_block (`int`, `Tuple[int]`, or `Tuple[Tuple]` , *optional*, defaults to 1):
115
+ The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`]. Only relevant for
116
+ [`~models.unet_2d_blocks.CrossAttnDownBlock2D`], [`~models.unet_2d_blocks.CrossAttnUpBlock2D`],
117
+ [`~models.unet_2d_blocks.UNetMidBlock2DCrossAttn`].
118
+ reverse_transformer_layers_per_block : (`Tuple[Tuple]`, *optional*, defaults to None):
119
+ The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`], in the upsampling
120
+ blocks of the U-Net. Only relevant if `transformer_layers_per_block` is of type `Tuple[Tuple]` and for
121
+ [`~models.unet_2d_blocks.CrossAttnDownBlock2D`], [`~models.unet_2d_blocks.CrossAttnUpBlock2D`],
122
+ [`~models.unet_2d_blocks.UNetMidBlock2DCrossAttn`].
123
+ encoder_hid_dim (`int`, *optional*, defaults to None):
124
+ If `encoder_hid_dim_type` is defined, `encoder_hidden_states` will be projected from `encoder_hid_dim`
125
+ dimension to `cross_attention_dim`.
126
+ encoder_hid_dim_type (`str`, *optional*, defaults to `None`):
127
+ If given, the `encoder_hidden_states` and potentially other embeddings are down-projected to text
128
+ embeddings of dimension `cross_attention` according to `encoder_hid_dim_type`.
129
+ attention_head_dim (`int`, *optional*, defaults to 8): The dimension of the attention heads.
130
+ num_attention_heads (`int`, *optional*):
131
+ The number of attention heads. If not defined, defaults to `attention_head_dim`
132
+ resnet_time_scale_shift (`str`, *optional*, defaults to `"default"`): Time scale shift config
133
+ for ResNet blocks (see [`~models.resnet.ResnetBlock2D`]). Choose from `default` or `scale_shift`.
134
+ class_embed_type (`str`, *optional*, defaults to `None`):
135
+ The type of class embedding to use which is ultimately summed with the time embeddings. Choose from `None`,
136
+ `"timestep"`, `"identity"`, `"projection"`, or `"simple_projection"`.
137
+ addition_embed_type (`str`, *optional*, defaults to `None`):
138
+ Configures an optional embedding which will be summed with the time embeddings. Choose from `None` or
139
+ "text". "text" will use the `TextTimeEmbedding` layer.
140
+ addition_time_embed_dim: (`int`, *optional*, defaults to `None`):
141
+ Dimension for the timestep embeddings.
142
+ num_class_embeds (`int`, *optional*, defaults to `None`):
143
+ Input dimension of the learnable embedding matrix to be projected to `time_embed_dim`, when performing
144
+ class conditioning with `class_embed_type` equal to `None`.
145
+ time_embedding_type (`str`, *optional*, defaults to `positional`):
146
+ The type of position embedding to use for timesteps. Choose from `positional` or `fourier`.
147
+ time_embedding_dim (`int`, *optional*, defaults to `None`):
148
+ An optional override for the dimension of the projected time embedding.
149
+ time_embedding_act_fn (`str`, *optional*, defaults to `None`):
150
+ Optional activation function to use only once on the time embeddings before they are passed to the rest of
151
+ the UNet. Choose from `silu`, `mish`, `gelu`, and `swish`.
152
+ timestep_post_act (`str`, *optional*, defaults to `None`):
153
+ The second activation function to use in timestep embedding. Choose from `silu`, `mish` and `gelu`.
154
+ time_cond_proj_dim (`int`, *optional*, defaults to `None`):
155
+ The dimension of `cond_proj` layer in the timestep embedding.
156
+ conv_in_kernel (`int`, *optional*, default to `3`): The kernel size of `conv_in` layer. conv_out_kernel (`int`,
157
+ *optional*, default to `3`): The kernel size of `conv_out` layer. projection_class_embeddings_input_dim (`int`,
158
+ *optional*): The dimension of the `class_labels` input when
159
+ `class_embed_type="projection"`. Required when `class_embed_type="projection"`.
160
+ class_embeddings_concat (`bool`, *optional*, defaults to `False`): Whether to concatenate the time
161
+ embeddings with the class embeddings.
162
+ mid_block_only_cross_attention (`bool`, *optional*, defaults to `None`):
163
+ Whether to use cross attention with the mid block when using the `UNetMidBlock2DSimpleCrossAttn`. If
164
+ `only_cross_attention` is given as a single boolean and `mid_block_only_cross_attention` is `None`, the
165
+ `only_cross_attention` value is used as the value for `mid_block_only_cross_attention`. Default to `False`
166
+ otherwise.
167
+ """
168
+
169
+ _supports_gradient_checkpointing = True
170
+
171
+ @register_to_config
172
+ def __init__(
173
+ self,
174
+ sample_size: Optional[int] = None,
175
+ in_channels: int = 4,
176
+ out_channels: int = 4,
177
+ center_input_sample: bool = False,
178
+ flip_sin_to_cos: bool = True,
179
+ freq_shift: int = 0,
180
+ down_block_types: Tuple[str] = (
181
+ "CrossAttnDownBlock2D",
182
+ "CrossAttnDownBlock2D",
183
+ "CrossAttnDownBlock2D",
184
+ "DownBlock2D",
185
+ ),
186
+ mid_block_type: Optional[str] = "UNetMidBlock2DCrossAttn",
187
+ up_block_types: Tuple[str] = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D"),
188
+ only_cross_attention: Union[bool, Tuple[bool]] = False,
189
+ block_out_channels: Tuple[int] = (320, 640, 1280, 1280),
190
+ layers_per_block: Union[int, Tuple[int]] = 2,
191
+ downsample_padding: int = 1,
192
+ mid_block_scale_factor: float = 1,
193
+ dropout: float = 0.0,
194
+ act_fn: str = "silu",
195
+ norm_num_groups: Optional[int] = 32,
196
+ norm_eps: float = 1e-5,
197
+ cross_attention_dim: Union[int, Tuple[int]] = 1280,
198
+ transformer_layers_per_block: Union[int, Tuple[int], Tuple[Tuple]] = 1,
199
+ reverse_transformer_layers_per_block: Optional[Tuple[Tuple[int]]] = None,
200
+ encoder_hid_dim: Optional[int] = None,
201
+ encoder_hid_dim_type: Optional[str] = None,
202
+ attention_head_dim: Union[int, Tuple[int]] = 8,
203
+ num_attention_heads: Optional[Union[int, Tuple[int]]] = None,
204
+ dual_cross_attention: bool = False,
205
+ use_linear_projection: bool = False,
206
+ class_embed_type: Optional[str] = None,
207
+ addition_embed_type: Optional[str] = None,
208
+ addition_time_embed_dim: Optional[int] = None,
209
+ num_class_embeds: Optional[int] = None,
210
+ upcast_attention: bool = False,
211
+ resnet_time_scale_shift: str = "default",
212
+ resnet_skip_time_act: bool = False,
213
+ resnet_out_scale_factor: int = 1.0,
214
+ time_embedding_type: str = "positional",
215
+ time_embedding_dim: Optional[int] = None,
216
+ time_embedding_act_fn: Optional[str] = None,
217
+ timestep_post_act: Optional[str] = None,
218
+ time_cond_proj_dim: Optional[int] = None,
219
+ conv_in_kernel: int = 3,
220
+ conv_out_kernel: int = 3,
221
+ projection_class_embeddings_input_dim: Optional[int] = None,
222
+ attention_type: str = "default",
223
+ class_embeddings_concat: bool = False,
224
+ mid_block_only_cross_attention: Optional[bool] = None,
225
+ cross_attention_norm: Optional[str] = None,
226
+ addition_embed_type_num_heads=64,
227
+ ):
228
+ super().__init__()
229
+
230
+ self.sample_size = sample_size
231
+
232
+ if num_attention_heads is not None:
233
+ raise ValueError(
234
+ "At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19."
235
+ )
236
+
237
+ # If `num_attention_heads` is not defined (which is the case for most models)
238
+ # it will default to `attention_head_dim`. This looks weird upon first reading it and it is.
239
+ # The reason for this behavior is to correct for incorrectly named variables that were introduced
240
+ # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131
241
+ # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking
242
+ # which is why we correct for the naming here.
243
+ num_attention_heads = num_attention_heads or attention_head_dim
244
+
245
+ # Check inputs
246
+ if len(down_block_types) != len(up_block_types):
247
+ raise ValueError(
248
+ f"Must provide the same number of `down_block_types` as `up_block_types`. `down_block_types`: {down_block_types}. `up_block_types`: {up_block_types}."
249
+ )
250
+
251
+ if len(block_out_channels) != len(down_block_types):
252
+ raise ValueError(
253
+ f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}."
254
+ )
255
+
256
+ if not isinstance(only_cross_attention, bool) and len(only_cross_attention) != len(down_block_types):
257
+ raise ValueError(
258
+ f"Must provide the same number of `only_cross_attention` as `down_block_types`. `only_cross_attention`: {only_cross_attention}. `down_block_types`: {down_block_types}."
259
+ )
260
+
261
+ if not isinstance(num_attention_heads, int) and len(num_attention_heads) != len(down_block_types):
262
+ raise ValueError(
263
+ f"Must provide the same number of `num_attention_heads` as `down_block_types`. `num_attention_heads`: {num_attention_heads}. `down_block_types`: {down_block_types}."
264
+ )
265
+
266
+ if not isinstance(attention_head_dim, int) and len(attention_head_dim) != len(down_block_types):
267
+ raise ValueError(
268
+ f"Must provide the same number of `attention_head_dim` as `down_block_types`. `attention_head_dim`: {attention_head_dim}. `down_block_types`: {down_block_types}."
269
+ )
270
+
271
+ if isinstance(cross_attention_dim, list) and len(cross_attention_dim) != len(down_block_types):
272
+ raise ValueError(
273
+ f"Must provide the same number of `cross_attention_dim` as `down_block_types`. `cross_attention_dim`: {cross_attention_dim}. `down_block_types`: {down_block_types}."
274
+ )
275
+
276
+ if not isinstance(layers_per_block, int) and len(layers_per_block) != len(down_block_types):
277
+ raise ValueError(
278
+ f"Must provide the same number of `layers_per_block` as `down_block_types`. `layers_per_block`: {layers_per_block}. `down_block_types`: {down_block_types}."
279
+ )
280
+ if isinstance(transformer_layers_per_block, list) and reverse_transformer_layers_per_block is None:
281
+ for layer_number_per_block in transformer_layers_per_block:
282
+ if isinstance(layer_number_per_block, list):
283
+ raise ValueError("Must provide 'reverse_transformer_layers_per_block` if using asymmetrical UNet.")
284
+
285
+ # input
286
+ conv_in_padding = (conv_in_kernel - 1) // 2
287
+ self.conv_in = nn.Conv2d(
288
+ in_channels, block_out_channels[0], kernel_size=conv_in_kernel, padding=conv_in_padding
289
+ )
290
+
291
+ # time
292
+ if time_embedding_type == "fourier":
293
+ time_embed_dim = time_embedding_dim or block_out_channels[0] * 2
294
+ if time_embed_dim % 2 != 0:
295
+ raise ValueError(f"`time_embed_dim` should be divisible by 2, but is {time_embed_dim}.")
296
+ self.time_proj = GaussianFourierProjection(
297
+ time_embed_dim // 2, set_W_to_weight=False, log=False, flip_sin_to_cos=flip_sin_to_cos
298
+ )
299
+ timestep_input_dim = time_embed_dim
300
+ elif time_embedding_type == "positional":
301
+ time_embed_dim = time_embedding_dim or block_out_channels[0] * 4
302
+
303
+ self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift)
304
+ timestep_input_dim = block_out_channels[0]
305
+ else:
306
+ raise ValueError(
307
+ f"{time_embedding_type} does not exist. Please make sure to use one of `fourier` or `positional`."
308
+ )
309
+
310
+ self.time_embedding = TimestepEmbedding(
311
+ timestep_input_dim,
312
+ time_embed_dim,
313
+ act_fn=act_fn,
314
+ post_act_fn=timestep_post_act,
315
+ cond_proj_dim=time_cond_proj_dim,
316
+ )
317
+
318
+ if encoder_hid_dim_type is None and encoder_hid_dim is not None:
319
+ encoder_hid_dim_type = "text_proj"
320
+ self.register_to_config(encoder_hid_dim_type=encoder_hid_dim_type)
321
+ logger.info("encoder_hid_dim_type defaults to 'text_proj' as `encoder_hid_dim` is defined.")
322
+
323
+ if encoder_hid_dim is None and encoder_hid_dim_type is not None:
324
+ raise ValueError(
325
+ f"`encoder_hid_dim` has to be defined when `encoder_hid_dim_type` is set to {encoder_hid_dim_type}."
326
+ )
327
+
328
+ if encoder_hid_dim_type == "text_proj":
329
+ self.encoder_hid_proj = nn.Linear(encoder_hid_dim, cross_attention_dim)
330
+ elif encoder_hid_dim_type == "text_image_proj":
331
+ # image_embed_dim DOESN'T have to be `cross_attention_dim`. To not clutter the __init__ too much
332
+ # they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
333
+ # case when `addition_embed_type == "text_image_proj"` (Kadinsky 2.1)`
334
+ self.encoder_hid_proj = TextImageProjection(
335
+ text_embed_dim=encoder_hid_dim,
336
+ image_embed_dim=cross_attention_dim,
337
+ cross_attention_dim=cross_attention_dim,
338
+ )
339
+ elif encoder_hid_dim_type == "image_proj":
340
+ # Kandinsky 2.2
341
+ self.encoder_hid_proj = ImageProjection(
342
+ image_embed_dim=encoder_hid_dim,
343
+ cross_attention_dim=cross_attention_dim,
344
+ )
345
+ elif encoder_hid_dim_type is not None:
346
+ raise ValueError(
347
+ f"encoder_hid_dim_type: {encoder_hid_dim_type} must be None, 'text_proj' or 'text_image_proj'."
348
+ )
349
+ else:
350
+ self.encoder_hid_proj = None
351
+
352
+ # class embedding
353
+ if class_embed_type is None and num_class_embeds is not None:
354
+ self.class_embedding = nn.Embedding(num_class_embeds, time_embed_dim)
355
+ elif class_embed_type == "timestep":
356
+ self.class_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim, act_fn=act_fn)
357
+ elif class_embed_type == "identity":
358
+ self.class_embedding = nn.Identity(time_embed_dim, time_embed_dim)
359
+ elif class_embed_type == "projection":
360
+ if projection_class_embeddings_input_dim is None:
361
+ raise ValueError(
362
+ "`class_embed_type`: 'projection' requires `projection_class_embeddings_input_dim` be set"
363
+ )
364
+ # The projection `class_embed_type` is the same as the timestep `class_embed_type` except
365
+ # 1. the `class_labels` inputs are not first converted to sinusoidal embeddings
366
+ # 2. it projects from an arbitrary input dimension.
367
+ #
368
+ # Note that `TimestepEmbedding` is quite general, being mainly linear layers and activations.
369
+ # When used for embedding actual timesteps, the timesteps are first converted to sinusoidal embeddings.
370
+ # As a result, `TimestepEmbedding` can be passed arbitrary vectors.
371
+ self.class_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
372
+ elif class_embed_type == "simple_projection":
373
+ if projection_class_embeddings_input_dim is None:
374
+ raise ValueError(
375
+ "`class_embed_type`: 'simple_projection' requires `projection_class_embeddings_input_dim` be set"
376
+ )
377
+ self.class_embedding = nn.Linear(projection_class_embeddings_input_dim, time_embed_dim)
378
+ else:
379
+ self.class_embedding = None
380
+
381
+ if addition_embed_type == "text":
382
+ if encoder_hid_dim is not None:
383
+ text_time_embedding_from_dim = encoder_hid_dim
384
+ else:
385
+ text_time_embedding_from_dim = cross_attention_dim
386
+
387
+ self.add_embedding = TextTimeEmbedding(
388
+ text_time_embedding_from_dim, time_embed_dim, num_heads=addition_embed_type_num_heads
389
+ )
390
+ elif addition_embed_type == "text_image":
391
+ # text_embed_dim and image_embed_dim DON'T have to be `cross_attention_dim`. To not clutter the __init__ too much
392
+ # they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
393
+ # case when `addition_embed_type == "text_image"` (Kadinsky 2.1)`
394
+ self.add_embedding = TextImageTimeEmbedding(
395
+ text_embed_dim=cross_attention_dim, image_embed_dim=cross_attention_dim, time_embed_dim=time_embed_dim
396
+ )
397
+ elif addition_embed_type == "text_time":
398
+ self.add_time_proj = Timesteps(addition_time_embed_dim, flip_sin_to_cos, freq_shift)
399
+ self.add_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
400
+ elif addition_embed_type == "image":
401
+ # Kandinsky 2.2
402
+ self.add_embedding = ImageTimeEmbedding(image_embed_dim=encoder_hid_dim, time_embed_dim=time_embed_dim)
403
+ elif addition_embed_type == "image_hint":
404
+ # Kandinsky 2.2 ControlNet
405
+ self.add_embedding = ImageHintTimeEmbedding(image_embed_dim=encoder_hid_dim, time_embed_dim=time_embed_dim)
406
+ elif addition_embed_type is not None:
407
+ raise ValueError(f"addition_embed_type: {addition_embed_type} must be None, 'text' or 'text_image'.")
408
+
409
+ if time_embedding_act_fn is None:
410
+ self.time_embed_act = None
411
+ else:
412
+ self.time_embed_act = get_activation(time_embedding_act_fn)
413
+
414
+ self.down_blocks = nn.ModuleList([])
415
+ self.up_blocks = nn.ModuleList([])
416
+
417
+ if isinstance(only_cross_attention, bool):
418
+ if mid_block_only_cross_attention is None:
419
+ mid_block_only_cross_attention = only_cross_attention
420
+
421
+ only_cross_attention = [only_cross_attention] * len(down_block_types)
422
+
423
+ if mid_block_only_cross_attention is None:
424
+ mid_block_only_cross_attention = False
425
+
426
+ if isinstance(num_attention_heads, int):
427
+ num_attention_heads = (num_attention_heads,) * len(down_block_types)
428
+
429
+ if isinstance(attention_head_dim, int):
430
+ attention_head_dim = (attention_head_dim,) * len(down_block_types)
431
+
432
+ if isinstance(cross_attention_dim, int):
433
+ cross_attention_dim = (cross_attention_dim,) * len(down_block_types)
434
+
435
+ if isinstance(layers_per_block, int):
436
+ layers_per_block = [layers_per_block] * len(down_block_types)
437
+
438
+ if isinstance(transformer_layers_per_block, int):
439
+ transformer_layers_per_block = [transformer_layers_per_block] * len(down_block_types)
440
+
441
+ if class_embeddings_concat:
442
+ # The time embeddings are concatenated with the class embeddings. The dimension of the
443
+ # time embeddings passed to the down, middle, and up blocks is twice the dimension of the
444
+ # regular time embeddings
445
+ blocks_time_embed_dim = time_embed_dim * 2
446
+ else:
447
+ blocks_time_embed_dim = time_embed_dim
448
+
449
+ # down
450
+ output_channel = block_out_channels[0]
451
+ for i, down_block_type in enumerate(down_block_types):
452
+ input_channel = output_channel
453
+ output_channel = block_out_channels[i]
454
+ is_final_block = i == len(block_out_channels) - 1
455
+
456
+ down_block = get_down_block(
457
+ down_block_type,
458
+ num_layers=layers_per_block[i],
459
+ transformer_layers_per_block=transformer_layers_per_block[i],
460
+ in_channels=input_channel,
461
+ out_channels=output_channel,
462
+ temb_channels=blocks_time_embed_dim,
463
+ add_downsample=not is_final_block,
464
+ resnet_eps=norm_eps,
465
+ resnet_act_fn=act_fn,
466
+ resnet_groups=norm_num_groups,
467
+ cross_attention_dim=cross_attention_dim[i],
468
+ num_attention_heads=num_attention_heads[i],
469
+ downsample_padding=downsample_padding,
470
+ dual_cross_attention=dual_cross_attention,
471
+ use_linear_projection=use_linear_projection,
472
+ only_cross_attention=only_cross_attention[i],
473
+ upcast_attention=upcast_attention,
474
+ resnet_time_scale_shift=resnet_time_scale_shift,
475
+ attention_type=attention_type,
476
+ resnet_skip_time_act=resnet_skip_time_act,
477
+ resnet_out_scale_factor=resnet_out_scale_factor,
478
+ cross_attention_norm=cross_attention_norm,
479
+ attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel,
480
+ dropout=dropout,
481
+ )
482
+ self.down_blocks.append(down_block)
483
+
484
+ # mid
485
+ if mid_block_type == "UNetMidBlock2DCrossAttn":
486
+ self.mid_block = UNetMidBlock2DCrossAttn(
487
+ transformer_layers_per_block=transformer_layers_per_block[-1],
488
+ in_channels=block_out_channels[-1],
489
+ temb_channels=blocks_time_embed_dim,
490
+ dropout=dropout,
491
+ resnet_eps=norm_eps,
492
+ resnet_act_fn=act_fn,
493
+ output_scale_factor=mid_block_scale_factor,
494
+ resnet_time_scale_shift=resnet_time_scale_shift,
495
+ cross_attention_dim=cross_attention_dim[-1],
496
+ num_attention_heads=num_attention_heads[-1],
497
+ resnet_groups=norm_num_groups,
498
+ dual_cross_attention=dual_cross_attention,
499
+ use_linear_projection=use_linear_projection,
500
+ upcast_attention=upcast_attention,
501
+ attention_type=attention_type,
502
+ )
503
+ elif mid_block_type == "UNetMidBlock2DSimpleCrossAttn":
504
+ self.mid_block = UNetMidBlock2DSimpleCrossAttn(
505
+ in_channels=block_out_channels[-1],
506
+ temb_channels=blocks_time_embed_dim,
507
+ dropout=dropout,
508
+ resnet_eps=norm_eps,
509
+ resnet_act_fn=act_fn,
510
+ output_scale_factor=mid_block_scale_factor,
511
+ cross_attention_dim=cross_attention_dim[-1],
512
+ attention_head_dim=attention_head_dim[-1],
513
+ resnet_groups=norm_num_groups,
514
+ resnet_time_scale_shift=resnet_time_scale_shift,
515
+ skip_time_act=resnet_skip_time_act,
516
+ only_cross_attention=mid_block_only_cross_attention,
517
+ cross_attention_norm=cross_attention_norm,
518
+ )
519
+ elif mid_block_type == "UNetMidBlock2D":
520
+ self.mid_block = UNetMidBlock2D(
521
+ in_channels=block_out_channels[-1],
522
+ temb_channels=blocks_time_embed_dim,
523
+ dropout=dropout,
524
+ num_layers=0,
525
+ resnet_eps=norm_eps,
526
+ resnet_act_fn=act_fn,
527
+ output_scale_factor=mid_block_scale_factor,
528
+ resnet_groups=norm_num_groups,
529
+ resnet_time_scale_shift=resnet_time_scale_shift,
530
+ add_attention=False,
531
+ )
532
+ elif mid_block_type is None:
533
+ self.mid_block = None
534
+ else:
535
+ raise ValueError(f"unknown mid_block_type : {mid_block_type}")
536
+
537
+ # count how many layers upsample the images
538
+ self.num_upsamplers = 0
539
+
540
+ # up
541
+ reversed_block_out_channels = list(reversed(block_out_channels))
542
+ reversed_num_attention_heads = list(reversed(num_attention_heads))
543
+ reversed_layers_per_block = list(reversed(layers_per_block))
544
+ reversed_cross_attention_dim = list(reversed(cross_attention_dim))
545
+ reversed_transformer_layers_per_block = (
546
+ list(reversed(transformer_layers_per_block))
547
+ if reverse_transformer_layers_per_block is None
548
+ else reverse_transformer_layers_per_block
549
+ )
550
+ only_cross_attention = list(reversed(only_cross_attention))
551
+
552
+ output_channel = reversed_block_out_channels[0]
553
+ for i, up_block_type in enumerate(up_block_types):
554
+ is_final_block = i == len(block_out_channels) - 1
555
+
556
+ prev_output_channel = output_channel
557
+ output_channel = reversed_block_out_channels[i]
558
+ input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)]
559
+
560
+ # add upsample block for all BUT final layer
561
+ if not is_final_block:
562
+ add_upsample = True
563
+ self.num_upsamplers += 1
564
+ else:
565
+ add_upsample = False
566
+
567
+ up_block = get_up_block(
568
+ up_block_type,
569
+ num_layers=reversed_layers_per_block[i] + 1,
570
+ transformer_layers_per_block=reversed_transformer_layers_per_block[i],
571
+ in_channels=input_channel,
572
+ out_channels=output_channel,
573
+ prev_output_channel=prev_output_channel,
574
+ temb_channels=blocks_time_embed_dim,
575
+ add_upsample=add_upsample,
576
+ resnet_eps=norm_eps,
577
+ resnet_act_fn=act_fn,
578
+ resolution_idx=i,
579
+ resnet_groups=norm_num_groups,
580
+ cross_attention_dim=reversed_cross_attention_dim[i],
581
+ num_attention_heads=reversed_num_attention_heads[i],
582
+ dual_cross_attention=dual_cross_attention,
583
+ use_linear_projection=use_linear_projection,
584
+ only_cross_attention=only_cross_attention[i],
585
+ upcast_attention=upcast_attention,
586
+ resnet_time_scale_shift=resnet_time_scale_shift,
587
+ attention_type=attention_type,
588
+ resnet_skip_time_act=resnet_skip_time_act,
589
+ resnet_out_scale_factor=resnet_out_scale_factor,
590
+ cross_attention_norm=cross_attention_norm,
591
+ attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel,
592
+ dropout=dropout,
593
+ )
594
+ self.up_blocks.append(up_block)
595
+ prev_output_channel = output_channel
596
+
597
+ # out
598
+ if norm_num_groups is not None:
599
+ self.conv_norm_out = nn.GroupNorm(
600
+ num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=norm_eps
601
+ )
602
+
603
+ self.conv_act = get_activation(act_fn)
604
+
605
+ else:
606
+ self.conv_norm_out = None
607
+ self.conv_act = None
608
+
609
+ conv_out_padding = (conv_out_kernel - 1) // 2
610
+ self.conv_out = nn.Conv2d(
611
+ block_out_channels[0], out_channels, kernel_size=conv_out_kernel, padding=conv_out_padding
612
+ )
613
+
614
+ if attention_type in ["gated", "gated-text-image"]:
615
+ positive_len = 768
616
+ if isinstance(cross_attention_dim, int):
617
+ positive_len = cross_attention_dim
618
+ elif isinstance(cross_attention_dim, tuple) or isinstance(cross_attention_dim, list):
619
+ positive_len = cross_attention_dim[0]
620
+
621
+ feature_type = "text-only" if attention_type == "gated" else "text-image"
622
+ self.position_net = PositionNet(
623
+ positive_len=positive_len, out_dim=cross_attention_dim, feature_type=feature_type
624
+ )
625
+
626
+ @property
627
+ def attn_processors(self) -> Dict[str, AttentionProcessor]:
628
+ r"""
629
+ Returns:
630
+ `dict` of attention processors: A dictionary containing all attention processors used in the model with
631
+ indexed by its weight name.
632
+ """
633
+ # set recursively
634
+ processors = {}
635
+
636
+ def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
637
+ if hasattr(module, "get_processor"):
638
+ processors[f"{name}.processor"] = module.get_processor(return_deprecated_lora=True)
639
+
640
+ for sub_name, child in module.named_children():
641
+ fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
642
+
643
+ return processors
644
+
645
+ for name, module in self.named_children():
646
+ fn_recursive_add_processors(name, module, processors)
647
+
648
+ return processors
649
+
650
+ def set_attn_processor(
651
+ self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]], _remove_lora=False
652
+ ):
653
+ r"""
654
+ Sets the attention processor to use to compute attention.
655
+
656
+ Parameters:
657
+ processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
658
+ The instantiated processor class or a dictionary of processor classes that will be set as the processor
659
+ for **all** `Attention` layers.
660
+
661
+ If `processor` is a dict, the key needs to define the path to the corresponding cross attention
662
+ processor. This is strongly recommended when setting trainable attention processors.
663
+
664
+ """
665
+ count = len(self.attn_processors.keys())
666
+
667
+ if isinstance(processor, dict) and len(processor) != count:
668
+ raise ValueError(
669
+ f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
670
+ f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
671
+ )
672
+
673
+ def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
674
+ if hasattr(module, "set_processor"):
675
+ if not isinstance(processor, dict):
676
+ module.set_processor(processor, _remove_lora=_remove_lora)
677
+ else:
678
+ module.set_processor(processor.pop(f"{name}.processor"), _remove_lora=_remove_lora)
679
+
680
+ for sub_name, child in module.named_children():
681
+ fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
682
+
683
+ for name, module in self.named_children():
684
+ fn_recursive_attn_processor(name, module, processor)
685
+
686
+ def set_default_attn_processor(self):
687
+ """
688
+ Disables custom attention processors and sets the default attention implementation.
689
+ """
690
+ if all(proc.__class__ in ADDED_KV_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
691
+ processor = AttnAddedKVProcessor()
692
+ elif all(proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
693
+ processor = AttnProcessor()
694
+ else:
695
+ raise ValueError(
696
+ f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}"
697
+ )
698
+
699
+ self.set_attn_processor(processor, _remove_lora=True)
700
+
701
+ def set_attention_slice(self, slice_size):
702
+ r"""
703
+ Enable sliced attention computation.
704
+
705
+ When this option is enabled, the attention module splits the input tensor in slices to compute attention in
706
+ several steps. This is useful for saving some memory in exchange for a small decrease in speed.
707
+
708
+ Args:
709
+ slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`):
710
+ When `"auto"`, input to the attention heads is halved, so attention is computed in two steps. If
711
+ `"max"`, maximum amount of memory is saved by running only one slice at a time. If a number is
712
+ provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim`
713
+ must be a multiple of `slice_size`.
714
+ """
715
+ sliceable_head_dims = []
716
+
717
+ def fn_recursive_retrieve_sliceable_dims(module: torch.nn.Module):
718
+ if hasattr(module, "set_attention_slice"):
719
+ sliceable_head_dims.append(module.sliceable_head_dim)
720
+
721
+ for child in module.children():
722
+ fn_recursive_retrieve_sliceable_dims(child)
723
+
724
+ # retrieve number of attention layers
725
+ for module in self.children():
726
+ fn_recursive_retrieve_sliceable_dims(module)
727
+
728
+ num_sliceable_layers = len(sliceable_head_dims)
729
+
730
+ if slice_size == "auto":
731
+ # half the attention head size is usually a good trade-off between
732
+ # speed and memory
733
+ slice_size = [dim // 2 for dim in sliceable_head_dims]
734
+ elif slice_size == "max":
735
+ # make smallest slice possible
736
+ slice_size = num_sliceable_layers * [1]
737
+
738
+ slice_size = num_sliceable_layers * [slice_size] if not isinstance(slice_size, list) else slice_size
739
+
740
+ if len(slice_size) != len(sliceable_head_dims):
741
+ raise ValueError(
742
+ f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different"
743
+ f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}."
744
+ )
745
+
746
+ for i in range(len(slice_size)):
747
+ size = slice_size[i]
748
+ dim = sliceable_head_dims[i]
749
+ if size is not None and size > dim:
750
+ raise ValueError(f"size {size} has to be smaller or equal to {dim}.")
751
+
752
+ # Recursively walk through all the children.
753
+ # Any children which exposes the set_attention_slice method
754
+ # gets the message
755
+ def fn_recursive_set_attention_slice(module: torch.nn.Module, slice_size: List[int]):
756
+ if hasattr(module, "set_attention_slice"):
757
+ module.set_attention_slice(slice_size.pop())
758
+
759
+ for child in module.children():
760
+ fn_recursive_set_attention_slice(child, slice_size)
761
+
762
+ reversed_slice_size = list(reversed(slice_size))
763
+ for module in self.children():
764
+ fn_recursive_set_attention_slice(module, reversed_slice_size)
765
+
766
+ def _set_gradient_checkpointing(self, module, value=False):
767
+ if hasattr(module, "gradient_checkpointing"):
768
+ module.gradient_checkpointing = value
769
+
770
+ def enable_freeu(self, s1, s2, b1, b2):
771
+ r"""Enables the FreeU mechanism from https://arxiv.org/abs/2309.11497.
772
+
773
+ The suffixes after the scaling factors represent the stage blocks where they are being applied.
774
+
775
+ Please refer to the [official repository](https://github.com/ChenyangSi/FreeU) for combinations of values that
776
+ are known to work well for different pipelines such as Stable Diffusion v1, v2, and Stable Diffusion XL.
777
+
778
+ Args:
779
+ s1 (`float`):
780
+ Scaling factor for stage 1 to attenuate the contributions of the skip features. This is done to
781
+ mitigate the "oversmoothing effect" in the enhanced denoising process.
782
+ s2 (`float`):
783
+ Scaling factor for stage 2 to attenuate the contributions of the skip features. This is done to
784
+ mitigate the "oversmoothing effect" in the enhanced denoising process.
785
+ b1 (`float`): Scaling factor for stage 1 to amplify the contributions of backbone features.
786
+ b2 (`float`): Scaling factor for stage 2 to amplify the contributions of backbone features.
787
+ """
788
+ for i, upsample_block in enumerate(self.up_blocks):
789
+ setattr(upsample_block, "s1", s1)
790
+ setattr(upsample_block, "s2", s2)
791
+ setattr(upsample_block, "b1", b1)
792
+ setattr(upsample_block, "b2", b2)
793
+
794
+ def disable_freeu(self):
795
+ """Disables the FreeU mechanism."""
796
+ freeu_keys = {"s1", "s2", "b1", "b2"}
797
+ for i, upsample_block in enumerate(self.up_blocks):
798
+ for k in freeu_keys:
799
+ if hasattr(upsample_block, k) or getattr(upsample_block, k, None) is not None:
800
+ setattr(upsample_block, k, None)
801
+
802
+ def fuse_qkv_projections(self):
803
+ """
804
+ Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query,
805
+ key, value) are fused. For cross-attention modules, key and value projection matrices are fused.
806
+
807
+ <Tip warning={true}>
808
+
809
+ This API is 🧪 experimental.
810
+
811
+ </Tip>
812
+ """
813
+ self.original_attn_processors = None
814
+
815
+ for _, attn_processor in self.attn_processors.items():
816
+ if "Added" in str(attn_processor.__class__.__name__):
817
+ raise ValueError("`fuse_qkv_projections()` is not supported for models having added KV projections.")
818
+
819
+ self.original_attn_processors = self.attn_processors
820
+
821
+ for module in self.modules():
822
+ if isinstance(module, Attention):
823
+ module.fuse_projections(fuse=True)
824
+
825
+ def unfuse_qkv_projections(self):
826
+ """Disables the fused QKV projection if enabled.
827
+
828
+ <Tip warning={true}>
829
+
830
+ This API is 🧪 experimental.
831
+
832
+ </Tip>
833
+
834
+ """
835
+ if self.original_attn_processors is not None:
836
+ self.set_attn_processor(self.original_attn_processors)
837
+
838
+ def forward(
839
+ self,
840
+ sample: torch.FloatTensor,
841
+ timestep: Union[torch.Tensor, float, int],
842
+ encoder_hidden_states: torch.Tensor,
843
+ class_labels: Optional[torch.Tensor] = None,
844
+ timestep_cond: Optional[torch.Tensor] = None,
845
+ attention_mask: Optional[torch.Tensor] = None,
846
+ cross_attention_kwargs: Optional[Dict[str, Any]] = None,
847
+ added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
848
+ down_block_additional_residuals: Optional[Tuple[torch.Tensor]] = None,
849
+ mid_block_additional_residual: Optional[torch.Tensor] = None,
850
+ down_intrablock_additional_residuals: Optional[Tuple[torch.Tensor]] = None,
851
+ encoder_attention_mask: Optional[torch.Tensor] = None,
852
+ return_dict: bool = True,
853
+ ) -> Union[UNet2DConditionOutput, Tuple]:
854
+ r"""
855
+ The [`UNet2DConditionModel`] forward method.
856
+
857
+ Args:
858
+ sample (`torch.FloatTensor`):
859
+ The noisy input tensor with the following shape `(batch, channel, height, width)`.
860
+ timestep (`torch.FloatTensor` or `float` or `int`): The number of timesteps to denoise an input.
861
+ encoder_hidden_states (`torch.FloatTensor`):
862
+ The encoder hidden states with shape `(batch, sequence_length, feature_dim)`.
863
+ class_labels (`torch.Tensor`, *optional*, defaults to `None`):
864
+ Optional class labels for conditioning. Their embeddings will be summed with the timestep embeddings.
865
+ timestep_cond: (`torch.Tensor`, *optional*, defaults to `None`):
866
+ Conditional embeddings for timestep. If provided, the embeddings will be summed with the samples passed
867
+ through the `self.time_embedding` layer to obtain the timestep embeddings.
868
+ attention_mask (`torch.Tensor`, *optional*, defaults to `None`):
869
+ An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask
870
+ is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large
871
+ negative values to the attention scores corresponding to "discard" tokens.
872
+ cross_attention_kwargs (`dict`, *optional*):
873
+ A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
874
+ `self.processor` in
875
+ [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
876
+ added_cond_kwargs: (`dict`, *optional*):
877
+ A kwargs dictionary containing additional embeddings that if specified are added to the embeddings that
878
+ are passed along to the UNet blocks.
879
+ down_block_additional_residuals: (`tuple` of `torch.Tensor`, *optional*):
880
+ A tuple of tensors that if specified are added to the residuals of down unet blocks.
881
+ mid_block_additional_residual: (`torch.Tensor`, *optional*):
882
+ A tensor that if specified is added to the residual of the middle unet block.
883
+ encoder_attention_mask (`torch.Tensor`):
884
+ A cross-attention mask of shape `(batch, sequence_length)` is applied to `encoder_hidden_states`. If
885
+ `True` the mask is kept, otherwise if `False` it is discarded. Mask will be converted into a bias,
886
+ which adds large negative values to the attention scores corresponding to "discard" tokens.
887
+ return_dict (`bool`, *optional*, defaults to `True`):
888
+ Whether or not to return a [`~models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain
889
+ tuple.
890
+ cross_attention_kwargs (`dict`, *optional*):
891
+ A kwargs dictionary that if specified is passed along to the [`AttnProcessor`].
892
+ added_cond_kwargs: (`dict`, *optional*):
893
+ A kwargs dictionary containin additional embeddings that if specified are added to the embeddings that
894
+ are passed along to the UNet blocks.
895
+ down_block_additional_residuals (`tuple` of `torch.Tensor`, *optional*):
896
+ additional residuals to be added to UNet long skip connections from down blocks to up blocks for
897
+ example from ControlNet side model(s)
898
+ mid_block_additional_residual (`torch.Tensor`, *optional*):
899
+ additional residual to be added to UNet mid block output, for example from ControlNet side model
900
+ down_intrablock_additional_residuals (`tuple` of `torch.Tensor`, *optional*):
901
+ additional residuals to be added within UNet down blocks, for example from T2I-Adapter side model(s)
902
+
903
+ Returns:
904
+ [`~models.unet_2d_condition.UNet2DConditionOutput`] or `tuple`:
905
+ If `return_dict` is True, an [`~models.unet_2d_condition.UNet2DConditionOutput`] is returned, otherwise
906
+ a `tuple` is returned where the first element is the sample tensor.
907
+ """
908
+
909
+ # By default samples have to be AT least a multiple of the overall upsampling factor.
910
+ # The overall upsampling factor is equal to 2 ** (# num of upsampling layers).
911
+ # However, the upsampling interpolation output size can be forced to fit any upsampling size
912
+ # on the fly if necessary.
913
+ default_overall_up_factor = 2**self.num_upsamplers
914
+
915
+ # upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor`
916
+ forward_upsample_size = False
917
+ upsample_size = None
918
+
919
+ for dim in sample.shape[-2:]:
920
+ if dim % default_overall_up_factor != 0:
921
+ # Forward upsample size to force interpolation output size.
922
+ forward_upsample_size = True
923
+ break
924
+
925
+ # ensure attention_mask is a bias, and give it a singleton query_tokens dimension
926
+ # expects mask of shape:
927
+ # [batch, key_tokens]
928
+ # adds singleton query_tokens dimension:
929
+ # [batch, 1, key_tokens]
930
+ # this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes:
931
+ # [batch, heads, query_tokens, key_tokens] (e.g. torch sdp attn)
932
+ # [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn)
933
+ if attention_mask is not None:
934
+ # assume that mask is expressed as:
935
+ # (1 = keep, 0 = discard)
936
+ # convert mask into a bias that can be added to attention scores:
937
+ # (keep = +0, discard = -10000.0)
938
+ attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
939
+ attention_mask = attention_mask.unsqueeze(1)
940
+
941
+ # convert encoder_attention_mask to a bias the same way we do for attention_mask
942
+ if encoder_attention_mask is not None:
943
+ encoder_attention_mask = (1 - encoder_attention_mask.to(sample.dtype)) * -10000.0
944
+ encoder_attention_mask = encoder_attention_mask.unsqueeze(1)
945
+
946
+ # 0. center input if necessary
947
+ if self.config.center_input_sample:
948
+ sample = 2 * sample - 1.0
949
+
950
+ # 1. time
951
+ timesteps = timestep
952
+ if not torch.is_tensor(timesteps):
953
+ # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
954
+ # This would be a good case for the `match` statement (Python 3.10+)
955
+ is_mps = sample.device.type == "mps"
956
+ if isinstance(timestep, float):
957
+ dtype = torch.float32 if is_mps else torch.float64
958
+ else:
959
+ dtype = torch.int32 if is_mps else torch.int64
960
+ timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
961
+ elif len(timesteps.shape) == 0:
962
+ timesteps = timesteps[None].to(sample.device)
963
+
964
+ # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
965
+ timesteps = timesteps.expand(sample.shape[0])
966
+
967
+ t_emb = self.time_proj(timesteps)
968
+
969
+ # `Timesteps` does not contain any weights and will always return f32 tensors
970
+ # but time_embedding might actually be running in fp16. so we need to cast here.
971
+ # there might be better ways to encapsulate this.
972
+ t_emb = t_emb.to(dtype=sample.dtype)
973
+
974
+ emb = self.time_embedding(t_emb, timestep_cond)
975
+ aug_emb = None
976
+
977
+ if self.class_embedding is not None:
978
+ if class_labels is None:
979
+ raise ValueError("class_labels should be provided when num_class_embeds > 0")
980
+
981
+ if self.config.class_embed_type == "timestep":
982
+ class_labels = self.time_proj(class_labels)
983
+
984
+ # `Timesteps` does not contain any weights and will always return f32 tensors
985
+ # there might be better ways to encapsulate this.
986
+ class_labels = class_labels.to(dtype=sample.dtype)
987
+
988
+ class_emb = self.class_embedding(class_labels).to(dtype=sample.dtype)
989
+
990
+ if self.config.class_embeddings_concat:
991
+ emb = torch.cat([emb, class_emb], dim=-1)
992
+ else:
993
+ emb = emb + class_emb
994
+
995
+ if self.config.addition_embed_type == "text":
996
+ aug_emb = self.add_embedding(encoder_hidden_states)
997
+ elif self.config.addition_embed_type == "text_image":
998
+ # Kandinsky 2.1 - style
999
+ if "image_embeds" not in added_cond_kwargs:
1000
+ raise ValueError(
1001
+ f"{self.__class__} has the config param `addition_embed_type` set to 'text_image' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`"
1002
+ )
1003
+
1004
+ image_embs = added_cond_kwargs.get("image_embeds")
1005
+ text_embs = added_cond_kwargs.get("text_embeds", encoder_hidden_states)
1006
+ aug_emb = self.add_embedding(text_embs, image_embs)
1007
+ elif self.config.addition_embed_type == "text_time":
1008
+ # SDXL - style
1009
+ if "text_embeds" not in added_cond_kwargs:
1010
+ raise ValueError(
1011
+ f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `text_embeds` to be passed in `added_cond_kwargs`"
1012
+ )
1013
+ text_embeds = added_cond_kwargs.get("text_embeds")
1014
+ if "time_ids" not in added_cond_kwargs:
1015
+ raise ValueError(
1016
+ f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `time_ids` to be passed in `added_cond_kwargs`"
1017
+ )
1018
+ time_ids = added_cond_kwargs.get("time_ids")
1019
+ time_embeds = self.add_time_proj(time_ids.flatten())
1020
+ time_embeds = time_embeds.reshape((text_embeds.shape[0], -1))
1021
+ add_embeds = torch.concat([text_embeds, time_embeds], dim=-1)
1022
+ add_embeds = add_embeds.to(emb.dtype)
1023
+ aug_emb = self.add_embedding(add_embeds)
1024
+ elif self.config.addition_embed_type == "image":
1025
+ # Kandinsky 2.2 - style
1026
+ if "image_embeds" not in added_cond_kwargs:
1027
+ raise ValueError(
1028
+ f"{self.__class__} has the config param `addition_embed_type` set to 'image' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`"
1029
+ )
1030
+ image_embs = added_cond_kwargs.get("image_embeds")
1031
+ aug_emb = self.add_embedding(image_embs)
1032
+ elif self.config.addition_embed_type == "image_hint":
1033
+ # Kandinsky 2.2 - style
1034
+ if "image_embeds" not in added_cond_kwargs or "hint" not in added_cond_kwargs:
1035
+ raise ValueError(
1036
+ f"{self.__class__} has the config param `addition_embed_type` set to 'image_hint' which requires the keyword arguments `image_embeds` and `hint` to be passed in `added_cond_kwargs`"
1037
+ )
1038
+ image_embs = added_cond_kwargs.get("image_embeds")
1039
+ hint = added_cond_kwargs.get("hint")
1040
+ aug_emb, hint = self.add_embedding(image_embs, hint)
1041
+ sample = torch.cat([sample, hint], dim=1)
1042
+
1043
+ emb = emb + aug_emb if aug_emb is not None else emb
1044
+
1045
+ if self.time_embed_act is not None:
1046
+ emb = self.time_embed_act(emb)
1047
+
1048
+ if self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "text_proj":
1049
+ encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states)
1050
+ elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "text_image_proj":
1051
+ # Kadinsky 2.1 - style
1052
+ if "image_embeds" not in added_cond_kwargs:
1053
+ raise ValueError(
1054
+ f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'text_image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`"
1055
+ )
1056
+
1057
+ image_embeds = added_cond_kwargs.get("image_embeds")
1058
+ encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states, image_embeds)
1059
+ elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "image_proj":
1060
+ # Kandinsky 2.2 - style
1061
+ if "image_embeds" not in added_cond_kwargs:
1062
+ raise ValueError(
1063
+ f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`"
1064
+ )
1065
+ image_embeds = added_cond_kwargs.get("image_embeds")
1066
+ encoder_hidden_states = self.encoder_hid_proj(image_embeds)
1067
+ elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "ip_image_proj":
1068
+ if "image_embeds" not in added_cond_kwargs:
1069
+ raise ValueError(
1070
+ f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'ip_image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`"
1071
+ )
1072
+ image_embeds = added_cond_kwargs.get("image_embeds")
1073
+ image_embeds = self.encoder_hid_proj(image_embeds).to(encoder_hidden_states.dtype)
1074
+ encoder_hidden_states = torch.cat([encoder_hidden_states, image_embeds], dim=1)
1075
+
1076
+ # 2. pre-process
1077
+ sample = self.conv_in(sample)
1078
+
1079
+ # 2.5 GLIGEN position net
1080
+ if cross_attention_kwargs is not None and cross_attention_kwargs.get("gligen", None) is not None:
1081
+ cross_attention_kwargs = cross_attention_kwargs.copy()
1082
+ gligen_args = cross_attention_kwargs.pop("gligen")
1083
+ cross_attention_kwargs["gligen"] = {"objs": self.position_net(**gligen_args)}
1084
+
1085
+ # 3. down
1086
+ lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0
1087
+ if USE_PEFT_BACKEND:
1088
+ # weight the lora layers by setting `lora_scale` for each PEFT layer
1089
+ scale_lora_layers(self, lora_scale)
1090
+
1091
+ is_controlnet = mid_block_additional_residual is not None and down_block_additional_residuals is not None
1092
+ # using new arg down_intrablock_additional_residuals for T2I-Adapters, to distinguish from controlnets
1093
+ is_adapter = down_intrablock_additional_residuals is not None
1094
+ # maintain backward compatibility for legacy usage, where
1095
+ # T2I-Adapter and ControlNet both use down_block_additional_residuals arg
1096
+ # but can only use one or the other
1097
+ if not is_adapter and mid_block_additional_residual is None and down_block_additional_residuals is not None:
1098
+ deprecate(
1099
+ "T2I should not use down_block_additional_residuals",
1100
+ "1.3.0",
1101
+ "Passing intrablock residual connections with `down_block_additional_residuals` is deprecated \
1102
+ and will be removed in diffusers 1.3.0. `down_block_additional_residuals` should only be used \
1103
+ for ControlNet. Please make sure use `down_intrablock_additional_residuals` instead. ",
1104
+ standard_warn=False,
1105
+ )
1106
+ down_intrablock_additional_residuals = down_block_additional_residuals
1107
+ is_adapter = True
1108
+
1109
+ down_block_res_samples = (sample,)
1110
+ for downsample_block in self.down_blocks:
1111
+ if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention:
1112
+ # For t2i-adapter CrossAttnDownBlock2D
1113
+ additional_residuals = {}
1114
+ if is_adapter and len(down_intrablock_additional_residuals) > 0:
1115
+ additional_residuals["additional_residuals"] = down_intrablock_additional_residuals.pop(0)
1116
+
1117
+ sample, res_samples = downsample_block(
1118
+ hidden_states=sample,
1119
+ temb=emb,
1120
+ encoder_hidden_states=encoder_hidden_states,
1121
+ attention_mask=attention_mask,
1122
+ cross_attention_kwargs=cross_attention_kwargs,
1123
+ encoder_attention_mask=encoder_attention_mask,
1124
+ **additional_residuals,
1125
+ )
1126
+ else:
1127
+ sample, res_samples = downsample_block(hidden_states=sample, temb=emb, scale=lora_scale)
1128
+ if is_adapter and len(down_intrablock_additional_residuals) > 0:
1129
+ sample += down_intrablock_additional_residuals.pop(0)
1130
+
1131
+ down_block_res_samples += res_samples
1132
+
1133
+ if is_controlnet:
1134
+ new_down_block_res_samples = ()
1135
+
1136
+ for down_block_res_sample, down_block_additional_residual in zip(
1137
+ down_block_res_samples, down_block_additional_residuals
1138
+ ):
1139
+ down_block_res_sample = down_block_res_sample + down_block_additional_residual
1140
+ new_down_block_res_samples = new_down_block_res_samples + (down_block_res_sample,)
1141
+
1142
+ down_block_res_samples = new_down_block_res_samples
1143
+
1144
+ # 4. mid
1145
+ if self.mid_block is not None:
1146
+ if hasattr(self.mid_block, "has_cross_attention") and self.mid_block.has_cross_attention:
1147
+ sample = self.mid_block(
1148
+ sample,
1149
+ emb,
1150
+ encoder_hidden_states=encoder_hidden_states,
1151
+ attention_mask=attention_mask,
1152
+ cross_attention_kwargs=cross_attention_kwargs,
1153
+ encoder_attention_mask=encoder_attention_mask,
1154
+ )
1155
+ else:
1156
+ sample = self.mid_block(sample, emb)
1157
+
1158
+ # To support T2I-Adapter-XL
1159
+ if (
1160
+ is_adapter
1161
+ and len(down_intrablock_additional_residuals) > 0
1162
+ and sample.shape == down_intrablock_additional_residuals[0].shape
1163
+ ):
1164
+ sample += down_intrablock_additional_residuals.pop(0)
1165
+
1166
+ if is_controlnet:
1167
+ sample = sample + mid_block_additional_residual
1168
+
1169
+ # 5. up
1170
+ for i, upsample_block in enumerate(self.up_blocks):
1171
+ is_final_block = i == len(self.up_blocks) - 1
1172
+
1173
+ res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
1174
+ down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]
1175
+
1176
+ # if we have not reached the final block and need to forward the
1177
+ # upsample size, we do it here
1178
+ if not is_final_block and forward_upsample_size:
1179
+ upsample_size = down_block_res_samples[-1].shape[2:]
1180
+
1181
+ if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention:
1182
+ sample = upsample_block(
1183
+ hidden_states=sample,
1184
+ temb=emb,
1185
+ res_hidden_states_tuple=res_samples,
1186
+ encoder_hidden_states=encoder_hidden_states,
1187
+ cross_attention_kwargs=cross_attention_kwargs,
1188
+ upsample_size=upsample_size,
1189
+ attention_mask=attention_mask,
1190
+ encoder_attention_mask=encoder_attention_mask,
1191
+ )
1192
+ else:
1193
+ sample = upsample_block(
1194
+ hidden_states=sample,
1195
+ temb=emb,
1196
+ res_hidden_states_tuple=res_samples,
1197
+ upsample_size=upsample_size,
1198
+ scale=lora_scale,
1199
+ )
1200
+
1201
+ # 6. post-process
1202
+ if self.conv_norm_out:
1203
+ sample = self.conv_norm_out(sample)
1204
+ sample = self.conv_act(sample)
1205
+ sample = self.conv_out(sample)
1206
+
1207
+ if USE_PEFT_BACKEND:
1208
+ # remove `lora_scale` from each PEFT layer
1209
+ unscale_lora_layers(self, lora_scale)
1210
+
1211
+ if not return_dict:
1212
+ return (sample,)
1213
+
1214
+ return UNet2DConditionOutput(sample=sample)