Spaces:
Running
on
Zero
Running
on
Zero
lemonaddie
commited on
Update app_recon.py
Browse files- app_recon.py +0 -4
app_recon.py
CHANGED
@@ -59,7 +59,6 @@ vae = AutoencoderKL.from_pretrained("./", subfolder='vae')
|
|
59 |
scheduler = DDIMScheduler.from_pretrained("./", subfolder='scheduler')
|
60 |
image_encoder = CLIPVisionModelWithProjection.from_pretrained("./", subfolder="image_encoder")
|
61 |
feature_extractor = CLIPImageProcessor.from_pretrained("./", subfolder="feature_extractor")
|
62 |
-
|
63 |
unet = UNet2DConditionModel.from_pretrained('.', subfolder="unet")
|
64 |
|
65 |
pipe = DepthNormalEstimationPipeline(vae=vae,
|
@@ -197,9 +196,6 @@ def reconstruction(image_file, files):
|
|
197 |
|
198 |
masked_image, mask = seg_foreground(image_file)
|
199 |
|
200 |
-
# import pdb
|
201 |
-
# pdb.set_trace()
|
202 |
-
|
203 |
mask = np.array(mask) > 0.5
|
204 |
depth_np = np.load(files[0])
|
205 |
normal_np = np.load(files[1])
|
|
|
59 |
scheduler = DDIMScheduler.from_pretrained("./", subfolder='scheduler')
|
60 |
image_encoder = CLIPVisionModelWithProjection.from_pretrained("./", subfolder="image_encoder")
|
61 |
feature_extractor = CLIPImageProcessor.from_pretrained("./", subfolder="feature_extractor")
|
|
|
62 |
unet = UNet2DConditionModel.from_pretrained('.', subfolder="unet")
|
63 |
|
64 |
pipe = DepthNormalEstimationPipeline(vae=vae,
|
|
|
196 |
|
197 |
masked_image, mask = seg_foreground(image_file)
|
198 |
|
|
|
|
|
|
|
199 |
mask = np.array(mask) > 0.5
|
200 |
depth_np = np.load(files[0])
|
201 |
normal_np = np.load(files[1])
|