Spaces:
Running
on
Zero
Running
on
Zero
lemonaddie
commited on
Update app1.py
Browse files
app1.py
CHANGED
@@ -1,10 +1,9 @@
|
|
1 |
-
import spaces
|
2 |
import functools
|
3 |
import os
|
4 |
import shutil
|
5 |
import sys
|
6 |
-
|
7 |
import git
|
|
|
8 |
import gradio as gr
|
9 |
import numpy as np
|
10 |
import torch as torch
|
@@ -12,283 +11,150 @@ from PIL import Image
|
|
12 |
|
13 |
from gradio_imageslider import ImageSlider
|
14 |
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
normal_out_vis=None,
|
24 |
-
path_out_fp32=None,
|
25 |
-
path_out_vis=None,
|
26 |
|
27 |
-
)
|
28 |
-
|
29 |
-
return (
|
30 |
-
[normal_out_vis, path_out_vis],
|
31 |
-
[normal_out_vis, path_out_fp32, path_out_vis],
|
32 |
-
)
|
33 |
|
34 |
-
|
35 |
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
#
|
44 |
-
# )
|
45 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
pipe_out = pipe(
|
47 |
-
|
48 |
-
denoising_steps=
|
49 |
-
ensemble_size=
|
50 |
-
processing_res=
|
51 |
batch_size=0,
|
52 |
-
guidance_scale=
|
53 |
-
domain=
|
54 |
show_progress_bar=True,
|
55 |
)
|
56 |
|
57 |
-
depth_pred = pipe_out.depth_np
|
58 |
depth_colored = pipe_out.depth_colored
|
59 |
normal_colored = pipe_out.normal_colored
|
60 |
-
|
61 |
-
|
62 |
-
path_output_dir = os.path.splitext(path_input)[0] + "_output"
|
63 |
-
os.makedirs(path_output_dir, exist_ok=True)
|
64 |
|
65 |
-
name_base = os.path.splitext(os.path.basename(path_input))[0]
|
66 |
-
path_out_fp32 = os.path.join(path_output_dir, f"{name_base}_depth_fp32.npy")
|
67 |
-
normal_out_vis = os.path.join(path_output_dir, f"{name_base}_normal_colored.png")
|
68 |
-
path_out_vis = os.path.join(path_output_dir, f"{name_base}_depth_colored.png")
|
69 |
|
70 |
-
#np.save(path_out_fp32, depth_pred)
|
71 |
-
#Image.fromarray(normal_out_vis).save(normal_out_vis)
|
72 |
-
depth_colored.save(path_out_vis)
|
73 |
|
74 |
-
|
75 |
-
[normal_out_vis, path_out_vis],
|
76 |
-
[normal_out_vis, path_out_fp32, path_out_vis],
|
77 |
-
)
|
78 |
|
79 |
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
title="Marigold Depth Estimation",
|
87 |
-
css="""
|
88 |
-
#download {
|
89 |
-
height: 118px;
|
90 |
-
}
|
91 |
-
.slider .inner {
|
92 |
-
width: 5px;
|
93 |
-
background: #FFF;
|
94 |
-
}
|
95 |
-
.viewport {
|
96 |
-
aspect-ratio: 4/3;
|
97 |
-
}
|
98 |
-
""",
|
99 |
-
) as demo:
|
100 |
-
gr.Markdown(
|
101 |
-
"""
|
102 |
-
<h1 align="center">GeoWizard</h1>
|
103 |
-
<p align="center">
|
104 |
-
<a title="Website" href="https://fuxiao0719.github.io/projects/geowizard/" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
|
105 |
-
<img src="https://www.obukhov.ai/img/badges/badge-website.svg">
|
106 |
-
</a>
|
107 |
-
<a title="arXiv" href="https://arxiv.org/abs/2403.12013" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
|
108 |
-
<img src="https://www.obukhov.ai/img/badges/badge-pdf.svg">
|
109 |
-
</a>
|
110 |
-
<a title="Github" href="https://github.com/fuxiao0719/GeoWizard" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
|
111 |
-
<img src="https://img.shields.io/github/stars/fuxiao0719/GeoWizard" alt="badge-github-stars">
|
112 |
-
</a>
|
113 |
-
</p>
|
114 |
-
<p align="justify">
|
115 |
-
GeoWizard is a Wizard who spells 3D geometry from a single image.
|
116 |
-
Upload your image into the <b>left</b> side.
|
117 |
-
</p>
|
118 |
-
"""
|
119 |
-
)
|
120 |
|
|
|
121 |
with gr.Row():
|
122 |
-
with gr.Column():
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
maximum=20,
|
139 |
-
step=1,
|
140 |
-
value=10,
|
141 |
-
)
|
142 |
-
processing_res = gr.Radio(
|
143 |
-
[
|
144 |
-
("Native", 0),
|
145 |
-
("Recommended", 768),
|
146 |
-
],
|
147 |
-
label="Processing resolution",
|
148 |
-
value=768,
|
149 |
-
)
|
150 |
-
domain = gr.Radio(
|
151 |
-
[
|
152 |
-
("indoor", "indoor"),
|
153 |
-
("outdoor", "outdoor"),
|
154 |
-
("object", "object"),
|
155 |
-
],
|
156 |
-
label="scene type",
|
157 |
-
value='indoor',
|
158 |
-
)
|
159 |
-
input_output_16bit = gr.File(
|
160 |
-
label="Predicted depth (16-bit)",
|
161 |
-
visible=False,
|
162 |
-
)
|
163 |
-
input_output_fp32 = gr.File(
|
164 |
-
label="Predicted depth (32-bit)",
|
165 |
-
visible=False,
|
166 |
-
)
|
167 |
-
input_output_vis = gr.File(
|
168 |
-
label="Predicted depth (red-near, blue-far)",
|
169 |
-
visible=False,
|
170 |
-
)
|
171 |
-
with gr.Row():
|
172 |
-
submit_btn = gr.Button(value="Compute Depth", variant="primary")
|
173 |
-
clear_btn = gr.Button(value="Clear")
|
174 |
-
with gr.Column():
|
175 |
-
output_slider = ImageSlider(
|
176 |
-
label="Predicted depth (red-near, blue-far)",
|
177 |
-
type="filepath",
|
178 |
-
show_download_button=True,
|
179 |
-
show_share_button=True,
|
180 |
-
interactive=False,
|
181 |
-
elem_classes="slider",
|
182 |
-
position=0.25,
|
183 |
-
)
|
184 |
-
files = gr.Files(
|
185 |
-
label="Depth outputs",
|
186 |
-
elem_id="download",
|
187 |
-
interactive=False,
|
188 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
189 |
|
190 |
-
blocks_settings_depth = [ensemble_size, denoise_steps, processing_res, domain]
|
191 |
-
blocks_settings = blocks_settings_depth
|
192 |
-
map_id_to_default = {b._id: b.value for b in blocks_settings}
|
193 |
-
|
194 |
-
inputs = [
|
195 |
-
input_image,
|
196 |
-
ensemble_size,
|
197 |
-
denoise_steps,
|
198 |
-
processing_res,
|
199 |
-
domain,
|
200 |
-
input_output_16bit,
|
201 |
-
input_output_fp32,
|
202 |
-
input_output_vis,
|
203 |
-
|
204 |
-
]
|
205 |
-
outputs = [
|
206 |
-
submit_btn,
|
207 |
-
input_image,
|
208 |
-
output_slider,
|
209 |
-
files,
|
210 |
-
]
|
211 |
-
|
212 |
-
def submit_depth_fn(*args):
|
213 |
-
out = list(process_pipe(*args))
|
214 |
-
out = [gr.Button(interactive=False), gr.Image(interactive=False)] + out
|
215 |
-
return out
|
216 |
-
|
217 |
-
submit_btn.click(
|
218 |
-
fn=submit_depth_fn,
|
219 |
-
inputs=inputs,
|
220 |
-
outputs=outputs,
|
221 |
-
concurrency_limit=1,
|
222 |
-
)
|
223 |
-
|
224 |
-
|
225 |
-
def clear_fn():
|
226 |
-
out = []
|
227 |
-
for b in blocks_settings:
|
228 |
-
out.append(map_id_to_default[b._id])
|
229 |
-
out += [
|
230 |
-
gr.Button(interactive=True),
|
231 |
-
gr.Button(interactive=True),
|
232 |
-
gr.Image(value=None, interactive=True),
|
233 |
-
None, None, None, None, None, None, None,
|
234 |
-
]
|
235 |
-
return out
|
236 |
-
|
237 |
-
clear_btn.click(
|
238 |
-
fn=clear_fn,
|
239 |
-
inputs=[],
|
240 |
-
outputs=blocks_settings + [
|
241 |
-
submit_btn,
|
242 |
-
input_image,
|
243 |
-
input_output_16bit,
|
244 |
-
input_output_fp32,
|
245 |
-
input_output_vis,
|
246 |
-
output_slider,
|
247 |
-
files,
|
248 |
-
],
|
249 |
-
)
|
250 |
-
|
251 |
-
demo.queue(
|
252 |
-
api_open=False,
|
253 |
-
).launch(
|
254 |
-
server_name="0.0.0.0",
|
255 |
-
server_port=7860,
|
256 |
-
)
|
257 |
-
|
258 |
-
|
259 |
-
def main():
|
260 |
-
|
261 |
-
REPO_URL = "https://github.com/lemonaddie/geowizard.git"
|
262 |
-
CHECKPOINT = "lemonaddie/Geowizard"
|
263 |
-
REPO_DIR = "geowizard"
|
264 |
-
|
265 |
-
if os.path.isdir(REPO_DIR):
|
266 |
-
shutil.rmtree(REPO_DIR)
|
267 |
-
|
268 |
-
repo = git.Repo.clone_from(REPO_URL, REPO_DIR)
|
269 |
-
sys.path.append(os.path.join(os.getcwd(), REPO_DIR))
|
270 |
-
|
271 |
-
from pipeline.depth_normal_pipeline_clip_cfg import DepthNormalEstimationPipeline
|
272 |
-
|
273 |
-
#device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
274 |
-
pipe = DepthNormalEstimationPipeline.from_pretrained(CHECKPOINT)
|
275 |
-
|
276 |
-
try:
|
277 |
-
import xformers
|
278 |
-
pipe.enable_xformers_memory_efficient_attention()
|
279 |
-
except:
|
280 |
-
pass # run without xformers
|
281 |
-
|
282 |
-
try:
|
283 |
-
import xformers
|
284 |
-
pipe.enable_xformers_memory_efficient_attention()
|
285 |
-
except:
|
286 |
-
pass # run without xformers
|
287 |
|
288 |
-
|
289 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
290 |
|
291 |
|
292 |
-
if __name__ ==
|
293 |
-
|
294 |
|
|
|
|
|
1 |
import functools
|
2 |
import os
|
3 |
import shutil
|
4 |
import sys
|
|
|
5 |
import git
|
6 |
+
|
7 |
import gradio as gr
|
8 |
import numpy as np
|
9 |
import torch as torch
|
|
|
11 |
|
12 |
from gradio_imageslider import ImageSlider
|
13 |
|
14 |
+
import spaces
|
15 |
+
|
16 |
+
REPO_URL = "https://github.com/lemonaddie/geowizard.git"
|
17 |
+
CHECKPOINT = "lemonaddie/Geowizard"
|
18 |
+
REPO_DIR = "geowizard"
|
19 |
+
|
20 |
+
if os.path.isdir(REPO_DIR):
|
21 |
+
shutil.rmtree(REPO_DIR)
|
|
|
|
|
|
|
22 |
|
23 |
+
repo = git.Repo.clone_from(REPO_URL, REPO_DIR)
|
24 |
+
sys.path.append(os.path.join(os.getcwd(), REPO_DIR))
|
|
|
|
|
|
|
|
|
25 |
|
26 |
+
from pipeline.depth_normal_pipeline_clip_cfg import DepthNormalEstimationPipeline
|
27 |
|
28 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
29 |
+
pipe = DepthNormalEstimationPipeline.from_pretrained(CHECKPOINT)
|
30 |
+
|
31 |
+
try:
|
32 |
+
import xformers
|
33 |
+
pipe.enable_xformers_memory_efficient_attention()
|
34 |
+
except:
|
35 |
+
pass # run without xformers
|
|
|
36 |
|
37 |
+
pipe = pipe.to(device)
|
38 |
+
#run_demo_server(pipe)
|
39 |
+
|
40 |
+
@spaces.GPU
|
41 |
+
def depth_normal(img,
|
42 |
+
denoising_steps,
|
43 |
+
ensemble_size,
|
44 |
+
processing_res,
|
45 |
+
guidance_scale,
|
46 |
+
domain):
|
47 |
+
img = img.resize((processing_res, processing_res), Image.Resampling.LANCZOS)
|
48 |
pipe_out = pipe(
|
49 |
+
img,
|
50 |
+
denoising_steps=denoising_steps,
|
51 |
+
ensemble_size=ensemble_size,
|
52 |
+
processing_res=processing_res,
|
53 |
batch_size=0,
|
54 |
+
guidance_scale=guidance_scale,
|
55 |
+
domain=domain,
|
56 |
show_progress_bar=True,
|
57 |
)
|
58 |
|
|
|
59 |
depth_colored = pipe_out.depth_colored
|
60 |
normal_colored = pipe_out.normal_colored
|
61 |
+
|
62 |
+
return depth_colored, normal_colored
|
|
|
|
|
63 |
|
|
|
|
|
|
|
|
|
64 |
|
|
|
|
|
|
|
65 |
|
66 |
+
def run_demo():
|
|
|
|
|
|
|
67 |
|
68 |
|
69 |
+
custom_theme = gr.themes.Soft(primary_hue="blue").set(
|
70 |
+
button_secondary_background_fill="*neutral_100",
|
71 |
+
button_secondary_background_fill_hover="*neutral_200")
|
72 |
+
custom_css = '''#disp_image {
|
73 |
+
text-align: center; /* Horizontally center the content */
|
74 |
+
}'''
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
|
76 |
+
with gr.Blocks(title=_TITLE, theme=custom_theme, css=custom_css) as demo:
|
77 |
with gr.Row():
|
78 |
+
with gr.Column(scale=1):
|
79 |
+
gr.Markdown('# ' + _TITLE)
|
80 |
+
gr.Markdown(_DESCRIPTION)
|
81 |
+
with gr.Row(variant='panel'):
|
82 |
+
with gr.Column(scale=1):
|
83 |
+
input_image = gr.Image(type='pil', image_mode='RGBA', height=320, label='Input image', tool=None)
|
84 |
+
|
85 |
+
example_folder = os.path.join(os.path.dirname(__file__), "./files")
|
86 |
+
example_fns = [os.path.join(example_folder, example) for example in os.listdir(example_folder)]
|
87 |
+
gr.Examples(
|
88 |
+
examples=example_fns,
|
89 |
+
inputs=[input_image],
|
90 |
+
# outputs=[input_image],
|
91 |
+
cache_examples=False,
|
92 |
+
label='Examples (click one of the images below to start)',
|
93 |
+
examples_per_page=30
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
94 |
)
|
95 |
+
with gr.Column(scale=1):
|
96 |
+
|
97 |
+
with gr.Accordion('Advanced options', open=True):
|
98 |
+
with gr.Row():
|
99 |
+
|
100 |
+
domain = gr.Radio(
|
101 |
+
[
|
102 |
+
("Outdoor", "outdoor"),
|
103 |
+
("Indoor", "indoor"),
|
104 |
+
("Object", "object"),
|
105 |
+
],
|
106 |
+
label="Data Domain",
|
107 |
+
value="indoor",
|
108 |
+
)
|
109 |
+
guidance_scale = gr.Slider(
|
110 |
+
label="Classifier Free Guidance Scale",
|
111 |
+
minimum=1,
|
112 |
+
maximum=5,
|
113 |
+
step=1,
|
114 |
+
value=3,
|
115 |
+
)
|
116 |
+
denoise_steps = gr.Slider(
|
117 |
+
label="Number of denoising steps",
|
118 |
+
minimum=1,
|
119 |
+
maximum=20,
|
120 |
+
step=1,
|
121 |
+
value=10,
|
122 |
+
)
|
123 |
+
ensemble_size = gr.Slider(
|
124 |
+
label="Ensemble size",
|
125 |
+
minimum=1,
|
126 |
+
maximum=15,
|
127 |
+
step=1,
|
128 |
+
value=1,
|
129 |
+
)
|
130 |
+
processing_res = gr.Radio(
|
131 |
+
[
|
132 |
+
("Native", 0),
|
133 |
+
("Recommended", 768),
|
134 |
+
],
|
135 |
+
label="Processing resolution",
|
136 |
+
value=768,
|
137 |
+
)
|
138 |
+
|
139 |
+
|
140 |
+
run_btn = gr.Button('Generate', variant='primary', interactive=True)
|
141 |
+
with gr.Row():
|
142 |
+
depth = gr.Image(interactive=False, height=384, show_label=False)
|
143 |
+
with gr.Row():
|
144 |
+
normal = gr.Image(interactive=False, height=384, show_label=False)
|
145 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
146 |
|
147 |
+
run_btn.success(fn=partial(depth_normal),
|
148 |
+
inputs=[input_image, denoising_steps,
|
149 |
+
ensemble_size,
|
150 |
+
processing_res,
|
151 |
+
guidance_scale,
|
152 |
+
domain],
|
153 |
+
outputs=[depth, normal]
|
154 |
+
)
|
155 |
+
demo.queue().launch(share=True, max_threads=80)
|
156 |
|
157 |
|
158 |
+
if __name__ == '__main__':
|
159 |
+
fire.Fire(run_demo)
|
160 |
|