from gradio import inputs import torch import numpy as np import torchvision as tv import gradio as gr model = tv.models.efficientnet_b0() num_ftrs = model.classifier[1].in_features model.classifier[1] = torch.nn.Linear(num_ftrs, 21) model.load_state_dict(torch.load('model/model_ep=1_acc=0.8909620610367893.pt', map_location = torch.device('cpu'))) model.eval() classes_to_idx = {'Accenteur mouchet': 0, 'Bouvreuil pivoine': 1, 'Chardonneret élégant': 2, 'Ecureuil roux': 3, 'Geai des chênes': 4, 'Grosbec casse-noyaux': 5, 'Merle noir': 6, 'Moineau domestique': 7, 'Moineau friquet': 8, 'Mésange Nonnette': 9, 'Mésange bleue': 10, 'Mésange charbonnière': 11, 'Mésange huppée': 12, 'Mésange noire': 13, 'Pic épeiche': 14, 'Pinson des arbres': 15, 'Pinson du Nord': 16, 'Rougegorge familier': 17, 'Sittelle torchepot': 18, 'Tourterelle turque': 19, "Verdier d'Europe": 20} classes = list(classes_to_idx.keys()) preprocess = tv.transforms.Compose([ tv.transforms.Resize((270, 359)), tv.transforms.ToTensor() #tv.transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ]) from PIL import Image def classidy_bird(image): inputs = preprocess(image).unsqueeze(0) inputs = inputs.to(torch.device('cpu')) pred = torch.nn.functional.softmax(model(inputs), dim = 1).detach().numpy()[0] return {classes[i] : float(pred[i]) for i in range(21)} image = gr.inputs.Image(type="pil", shape=(270, 359)) label = gr.outputs.Label(num_top_classes=3) title = "Poids Plume Classifier" examples = ['examples/mesange-charbonniere.jpg', 'examples/merle-noir.jpg', 'examples/tourterelle-turque.jpg'] gr.Interface(fn = classidy_bird, inputs=image, outputs=label, capture_session=True, examples=examples, title=title).launch()