lep1 commited on
Commit
904d7fb
·
verified ·
1 Parent(s): 10fe8c2

Upload 14 files

Browse files
.gitattributes CHANGED
@@ -33,3 +33,9 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ image/gray_image.jpg filter=lfs diff=lfs merge=lfs -text
37
+ image/test_1.jpg filter=lfs diff=lfs merge=lfs -text
38
+ image/test_2.jpg filter=lfs diff=lfs merge=lfs -text
39
+ image/test_3.jpg filter=lfs diff=lfs merge=lfs -text
40
+ image/test_4.jpg filter=lfs diff=lfs merge=lfs -text
41
+ image/test_5.jpg filter=lfs diff=lfs merge=lfs -text
README.md CHANGED
@@ -1,13 +1,13 @@
1
  ---
2
- title: Braille Recognition Model
3
- emoji: 🏃
4
  colorFrom: blue
5
- colorTo: red
6
  sdk: streamlit
7
- sdk_version: 1.39.0
8
  app_file: app.py
9
- pinned: false
10
  license: mit
11
  ---
12
 
13
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
1
  ---
2
+ title: Braille Detection
3
+ emoji: 🕶
4
  colorFrom: blue
5
+ colorTo: yellow
6
  sdk: streamlit
7
+ sdk_version: 1.17.0
8
  app_file: app.py
9
+ pinned: true
10
  license: mit
11
  ---
12
 
13
+ Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
alphabet_map.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "a": "100000",
3
+ "b": "110000",
4
+ "c": "100100",
5
+ "d": "100110",
6
+ "e": "100010",
7
+ "f": "110100",
8
+ "g": "110110",
9
+ "h": "110010",
10
+ "i": "010100",
11
+ "j": "010110",
12
+ "k": "101000",
13
+ "l": "111000",
14
+ "m": "101100",
15
+ "n": "101110",
16
+ "o": "101010",
17
+ "p": "111100",
18
+ "q": "111110",
19
+ "r": "111010",
20
+ "s": "011100",
21
+ "t": "011110",
22
+ "u": "101001",
23
+ "v": "111001",
24
+ "w": "010111",
25
+ "x": "101101",
26
+ "y": "101111",
27
+ "z": "101011"
28
+ }
app.py ADDED
@@ -0,0 +1,112 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Reference
3
+ - https://docs.streamlit.io/library/api-reference/layout
4
+ - https://github.com/CodingMantras/yolov8-streamlit-detection-tracking/blob/master/app.py
5
+ - https://huggingface.co/keremberke/yolov8m-valorant-detection/tree/main
6
+ - https://docs.ultralytics.com/usage/python/
7
+ """
8
+ import time
9
+ import PIL
10
+
11
+ import streamlit as st
12
+ import torch
13
+ from ultralyticsplus import YOLO, render_result
14
+
15
+ from convert import convert_to_braille_unicode, parse_xywh_and_class
16
+
17
+
18
+ def load_model(model_path):
19
+ """load model from path"""
20
+ model = YOLO(model_path)
21
+ return model
22
+
23
+
24
+ def load_image(image_path):
25
+ """load image from path"""
26
+ image = PIL.Image.open(image_path)
27
+ return image
28
+
29
+
30
+ # title
31
+ st.title("Braille Pattern Detection")
32
+
33
+ # sidebar
34
+ st.sidebar.header("Detection Config")
35
+
36
+ conf = float(st.sidebar.slider("Class Confidence", 10, 75, 15)) / 100
37
+ iou = float(st.sidebar.slider("IoU Threshold", 10, 75, 15)) / 100
38
+
39
+ model_path = "snoop2head/yolov8m-braille"
40
+
41
+ try:
42
+ model = load_model(model_path)
43
+ model.overrides["conf"] = conf # NMS confidence threshold
44
+ model.overrides["iou"] = iou # NMS IoU threshold
45
+ model.overrides["agnostic_nms"] = False # NMS class-agnostic
46
+ model.overrides["max_det"] = 1000 # maximum number of detections per image
47
+
48
+ except Exception as ex:
49
+ print(ex)
50
+ st.write(f"Unable to load model. Check the specified path: {model_path}")
51
+
52
+ source_img = None
53
+
54
+ source_img = st.sidebar.file_uploader(
55
+ "Choose an image...", type=("jpg", "jpeg", "png", "bmp", "webp")
56
+ )
57
+ col1, col2 = st.columns(2)
58
+
59
+ # left column of the page body
60
+ with col1:
61
+ if source_img is None:
62
+ default_image_path = "./images/alpha-numeric.jpeg"
63
+ image = load_image(default_image_path)
64
+ st.image(
65
+ default_image_path, caption="Example Input Image", use_column_width=True
66
+ )
67
+ else:
68
+ image = load_image(source_img)
69
+ st.image(source_img, caption="Uploaded Image", use_column_width=True)
70
+
71
+ # right column of the page body
72
+ with col2:
73
+ with st.spinner("Wait for it..."):
74
+ start_time = time.time()
75
+ try:
76
+ with torch.no_grad():
77
+ res = model.predict(
78
+ image, save=True, save_txt=True, exist_ok=True, conf=conf
79
+ )
80
+ boxes = res[0].boxes # first image
81
+ res_plotted = res[0].plot()[:, :, ::-1]
82
+
83
+ list_boxes = parse_xywh_and_class(boxes)
84
+
85
+ st.image(res_plotted, caption="Detected Image", use_column_width=True)
86
+ IMAGE_DOWNLOAD_PATH = f"runs/detect/predict/image0.jpg"
87
+
88
+ except Exception as ex:
89
+ st.write("Please upload image with types of JPG, JPEG, PNG ...")
90
+
91
+
92
+ try:
93
+ st.success(f"Done! Inference time: {time.time() - start_time:.2f} seconds")
94
+ st.subheader("Detected Braille Patterns")
95
+ for box_line in list_boxes:
96
+ str_left_to_right = ""
97
+ box_classes = box_line[:, -1]
98
+ for each_class in box_classes:
99
+ str_left_to_right += convert_to_braille_unicode(
100
+ model.names[int(each_class)]
101
+ )
102
+ st.write(str_left_to_right)
103
+ except Exception as ex:
104
+ st.write("Please try again with images with types of JPG, JPEG, PNG ...")
105
+
106
+ with open(IMAGE_DOWNLOAD_PATH, "rb") as fl:
107
+ st.download_button(
108
+ "Download object-detected image",
109
+ data=fl,
110
+ file_name="image0.jpg",
111
+ mime="image/jpg",
112
+ )
braille_map.json ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "000001": "⠠",
3
+ "000010": "⠐",
4
+ "000011": "⠰",
5
+ "000100": "⠈",
6
+ "000101": "⠨",
7
+ "000110": "⠘",
8
+ "000111": "⠸",
9
+ "001000": "⠄",
10
+ "001001": "⠤",
11
+ "001010": "⠔",
12
+ "001011": "⠴",
13
+ "001100": "⠌",
14
+ "001101": "⠬",
15
+ "001110": "⠜",
16
+ "001111": "⠼",
17
+ "010000": "⠂",
18
+ "010001": "⠢",
19
+ "010010": "⠒",
20
+ "010011": "⠲",
21
+ "010100": "⠊",
22
+ "010101": "⠪",
23
+ "010110": "⠚",
24
+ "010111": "⠺",
25
+ "011000": "⠆",
26
+ "011001": "⠦",
27
+ "011010": "⠖",
28
+ "011011": "⠶",
29
+ "011100": "⠎",
30
+ "011101": "⠮",
31
+ "011110": "⠞",
32
+ "011111": "⠾",
33
+ "100000": "⠁",
34
+ "100001": "⠡",
35
+ "100010": "⠑",
36
+ "100011": "⠱",
37
+ "100100": "⠉",
38
+ "100101": "⠩",
39
+ "100110": "⠙",
40
+ "100111": "⠹",
41
+ "101000": "⠅",
42
+ "101001": "⠥",
43
+ "101010": "⠕",
44
+ "101011": "⠵",
45
+ "101100": "⠍",
46
+ "101101": "⠭",
47
+ "101110": "⠝",
48
+ "101111": "⠽",
49
+ "110000": "⠃",
50
+ "110001": "⠣",
51
+ "110010": "⠓",
52
+ "110011": "⠳",
53
+ "110100": "⠋",
54
+ "110101": "⠫",
55
+ "110110": "⠛",
56
+ "110111": "⠻",
57
+ "111000": "⠇",
58
+ "111001": "⠧",
59
+ "111010": "⠗",
60
+ "111011": "⠷",
61
+ "111100": "⠏",
62
+ "111101": "⠯",
63
+ "111110": "⠟",
64
+ "111111": "⠿"
65
+ }
convert.py ADDED
@@ -0,0 +1,73 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+ import numpy as np
3
+ import torch
4
+
5
+
6
+ def convert_to_braille_unicode(str_input: str, path: str = "./src/utils/number_map.json") -> str:
7
+ with open(path, "r") as fl:
8
+ data = json.load(fl)
9
+
10
+ if str_input in data.keys():
11
+ str_output = data[str_input]
12
+ return str_output
13
+
14
+
15
+ def parse_xywh_and_class(boxes: torch.Tensor) -> list:
16
+ """
17
+ boxes input tensor
18
+ boxes (torch.Tensor) or (numpy.ndarray): A tensor or numpy array containing the detection boxes,
19
+ with shape (num_boxes, 6).
20
+ orig_shape (torch.Tensor) or (numpy.ndarray): Original image size, in the format (height, width).
21
+ Properties:
22
+ xyxy (torch.Tensor) or (numpy.ndarray): The boxes in xyxy format.
23
+ conf (torch.Tensor) or (numpy.ndarray): The confidence values of the boxes.
24
+ cls (torch.Tensor) or (numpy.ndarray): The class values of the boxes.
25
+ xywh (torch.Tensor) or (numpy.ndarray): The boxes in xywh format.
26
+ xyxyn (torch.Tensor) or (numpy.ndarray): The boxes in xyxy format normalized by original image size.
27
+ xywhn (torch.Tensor) or (numpy.ndarray): The boxes in xywh format normalized by original image size.
28
+ """
29
+
30
+ # copy values from troublesome "boxes" object to numpy array
31
+ new_boxes = np.zeros(boxes.shape)
32
+ new_boxes[:, :4] = boxes.xywh.cpu().numpy() # first 4 channels are xywh
33
+ new_boxes[:, 4] = boxes.conf.cpu().numpy() # 5th channel is confidence
34
+ new_boxes[:, 5] = boxes.cls.cpu().numpy() # 6th channel is class which is last channel
35
+
36
+ # sort according to y coordinate
37
+ new_boxes = new_boxes[new_boxes[:, 1].argsort()]
38
+
39
+ # find threshold index to break the line
40
+ y_threshold = np.mean(new_boxes[:, 3]) // 2
41
+ boxes_diff = np.diff(new_boxes[:, 1])
42
+ threshold_index = np.where(boxes_diff > y_threshold)[0]
43
+
44
+ # cluster according to threshold_index
45
+ boxes_clustered = np.split(new_boxes, threshold_index + 1)
46
+ boxes_return = []
47
+ for cluster in boxes_clustered:
48
+ # sort according to x coordinate
49
+ cluster = cluster[cluster[:, 0].argsort()]
50
+ boxes_return.append(cluster)
51
+
52
+ return boxes_return
53
+
54
+
55
+ def arrange_braille_to_2x3(box_classes: list) -> list:
56
+ """
57
+ 将检测到的盲文字符类别数组转为 2x3 点阵格式。
58
+ :param box_classes: 检测到的盲文字符类别列表 (长度必须是6的倍数)
59
+ :return: 2x3 盲文点阵列表
60
+ """
61
+ # 检查输入长度是否为6的倍数
62
+ if len(box_classes) % 6 != 0:
63
+ raise ValueError("输入的盲文字符数组长度必须是6的倍数")
64
+
65
+ braille_2x3_list = []
66
+
67
+ # 每次取6个字符并将它们排成2x3格式
68
+ for i in range(0, len(box_classes), 6):
69
+ # reshape为3x2矩阵然后转置为2x3矩阵
70
+ braille_char = np.array(box_classes[i:i + 6]).reshape(3, 2).T
71
+ braille_2x3_list.append(braille_char)
72
+
73
+ return braille_2x3_list
image/alpha-numeric.jpeg ADDED
image/gray_image.jpg ADDED

Git LFS Details

  • SHA256: 73655ab37367bf782370592f476fc4bed4d7c288633c7c3250dc55be6317d7dd
  • Pointer size: 132 Bytes
  • Size of remote file: 3.34 MB
image/img_41.jpg ADDED
image/test_1.jpg ADDED

Git LFS Details

  • SHA256: 1177b20c221a8a41131c5308ad45283dbe6814e5948c6a4936f73bb9a67255fa
  • Pointer size: 132 Bytes
  • Size of remote file: 3.52 MB
image/test_2.jpg ADDED

Git LFS Details

  • SHA256: 10cb74bb43c255ceacbc9ffdf92c34d0bdcdc63c050cfaa3d87254ebfd7f97c3
  • Pointer size: 132 Bytes
  • Size of remote file: 3.12 MB
image/test_3.jpg ADDED

Git LFS Details

  • SHA256: b51058b60303467b4f1286900f7684fcbdf2d00a23c6cc0815cf4f4b2c297493
  • Pointer size: 132 Bytes
  • Size of remote file: 3.36 MB
image/test_4.jpg ADDED

Git LFS Details

  • SHA256: 57ed48603586bc3cc5529b052f58f526d69abdac77c819de8598db3ec8927470
  • Pointer size: 132 Bytes
  • Size of remote file: 2.25 MB
image/test_5.jpg ADDED

Git LFS Details

  • SHA256: 3323297ac34f3c68c19ea0bd41ea677ab21eff94c66909ffa6243ba75cf6f211
  • Pointer size: 132 Bytes
  • Size of remote file: 2.44 MB
number_map.json ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "000001": "⠠",
3
+ "000010": "⠐",
4
+ "000011": "⠰",
5
+ "000100": "⠈",
6
+ "000101": "⠨",
7
+ "000110": "⠘",
8
+ "000111": "⠸",
9
+ "001000": "⠄",
10
+ "001001": "⠤",
11
+ "001010": "⠔",
12
+ "001011": "⠴",
13
+ "001100": "⠌",
14
+ "001101": "⠬",
15
+ "001110": "⠜",
16
+ "001111": "floor",
17
+ "010000": "⠂",
18
+ "010001": "⠢",
19
+ "010010": "⠒",
20
+ "010011": "⠲",
21
+ "010100": "9",
22
+ "010101": "⠪",
23
+ "010110": "0",
24
+ "010111": "⠺",
25
+ "011000": "⠆",
26
+ "011001": "⠦",
27
+ "011010": "⠖",
28
+ "011011": "⠶",
29
+ "011100": "⠎",
30
+ "011101": "⠮",
31
+ "011110": "⠞",
32
+ "011111": "⠾",
33
+ "100000": "1",
34
+ "100001": "⠡",
35
+ "100010": "5",
36
+ "100011": "⠱",
37
+ "100100": "3",
38
+ "100101": "⠩",
39
+ "100110": "4",
40
+ "100111": "⠹",
41
+ "101000": "⠅",
42
+ "101001": "⠥",
43
+ "101010": "⠕",
44
+ "101011": "⠵",
45
+ "101100": "⠍",
46
+ "101101": "⠭",
47
+ "101110": "⠝",
48
+ "101111": "⠽",
49
+ "110000": "2",
50
+ "110001": "⠣",
51
+ "110010": "8",
52
+ "110011": "⠳",
53
+ "110100": "6",
54
+ "110101": "⠫",
55
+ "110110": "7",
56
+ "110111": "⠻",
57
+ "111000": "⠇",
58
+ "111001": "⠧",
59
+ "111010": "⠗",
60
+ "111011": "⠷",
61
+ "111100": "⠏",
62
+ "111101": "⠯",
63
+ "111110": "⠟",
64
+ "111111": "⠿"
65
+ }
66
+