""" Reference - https://docs.streamlit.io/library/api-reference/layout - https://github.com/CodingMantras/yolov8-streamlit-detection-tracking/blob/master/app.py - https://huggingface.co/keremberke/yolov8m-valorant-detection/tree/main - https://docs.ultralytics.com/usage/python/ """ import time import PIL import streamlit as st import torch from ultralyticsplus import YOLO, render_result from gtts import gTTS import os import pygame from convert import convert_to_braille_unicode, parse_xywh_and_class def load_model(model_path): """load model from path""" model = YOLO(model_path) return model def load_image(image_path): """load image from path""" image = PIL.Image.open(image_path) return image # title st.title("Braille Pattern Detection") # sidebar st.sidebar.header("Detection Config") conf = float(st.sidebar.slider("Class Confidence", 10, 75, 15)) / 100 iou = float(st.sidebar.slider("IoU Threshold", 10, 75, 15)) / 100 model_path = "snoop2head/yolov8m-braille" try: model = load_model(model_path) model.overrides["conf"] = conf # NMS confidence threshold model.overrides["iou"] = iou # NMS IoU threshold model.overrides["agnostic_nms"] = False # NMS class-agnostic model.overrides["max_det"] = 1000 # maximum number of detections per image except Exception as ex: print(ex) st.write(f"Unable to load model. Check the specified path: {model_path}") source_img = None source_img = st.sidebar.file_uploader( "Choose an image...", type=("jpg", "jpeg", "png", "bmp", "webp") ) col1, col2 = st.columns(2) # left column of the page body with col1: if source_img is None: default_image_path = "./image/test_1.jpg" image = load_image(default_image_path) st.image( default_image_path, caption="Example Input Image", use_column_width=True ) else: image = load_image(source_img) st.image(source_img, caption="Uploaded Image", use_column_width=True) # right column of the page body with col2: with st.spinner("Wait for it..."): start_time = time.time() try: with torch.no_grad(): res = model.predict( image, save=True, save_txt=True, exist_ok=True, conf=conf ) boxes = res[0].boxes # first image res_plotted = res[0].plot()[:, :, ::-1] list_boxes = parse_xywh_and_class(boxes) st.image(res_plotted, caption="Detected Image", use_column_width=True) IMAGE_DOWNLOAD_PATH = f"runs/detect/predict/image0.jpg" except Exception as ex: st.write("Please upload image with types of JPG, JPEG, PNG ...") try: st.success(f"Done! Inference time: {time.time() - start_time:.2f} seconds") st.subheader("Detected Braille Patterns") for box_line in list_boxes: str_left_to_right = "" box_classes = box_line[:, -1] for each_class in box_classes: str_left_to_right += convert_to_braille_unicode(model.names[int(each_class)]) result += str_left_to_right + "\n" st.write(str_left_to_right) except Exception as ex: st.write("Please try again with images with types of JPG, JPEG, PNG ...") import tempfile def text_to_speech_gtts(text, lang='en'): """将文本转换为语音并保存为临时音频文件""" # 创建一个临时文件 with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as temp_audio_file: audio_path = temp_audio_file.name tts = gTTS(text=text, lang=lang) tts.save(audio_path) return audio_path try: # 生成语音文件 audio_file_path = text_to_speech_gtts(result) # 在 Streamlit 中播放音频 st.audio(audio_file_path, format="audio/mp3") # 提供下载按钮 with open(audio_file_path, "rb") as audio_file: st.download_button( label="Download Braille Audio", data=audio_file, file_name="detected_braille.mp3", mime="audio/mp3", ) except Exception as ex: st.write("An error occurred while processing the audio.")