sts / asr.py
lewistape's picture
Update asr.py
6a7ab5f verified
import torch
import torchaudio
import numpy as np
from transformers import Wav2Vec2ForCTC, AutoProcessor
from torch.cuda.amp import autocast
ASR_SAMPLING_RATE = 16_000
# Load model and processor only once
MODEL_ID = "facebook/mms-1b-all"
processor = AutoProcessor.from_pretrained(MODEL_ID)
model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID).to("cuda")
# Load supported languages from the TSV file
ASR_LANGUAGES = {}
with open("data/asr/all_langs.tsv") as f:
for line in f:
iso, name = line.split(" ", 1)
ASR_LANGUAGES[iso.strip()] = name.strip()
def transcribe(audio_data=None, lang="eng (English)"):
if audio_data is None or (isinstance(audio_data, np.ndarray) and audio_data.size == 0):
return "<<ERROR: Empty Audio Input>>"
if isinstance(audio_data, tuple):
sr, audio_samples = audio_data
audio_samples = (audio_samples / 32768.0).astype(np.float32)
if sr != ASR_SAMPLING_RATE:
audio_samples = torchaudio.functional.resample(
torch.tensor(audio_samples), sr, ASR_SAMPLING_RATE
).numpy()
elif isinstance(audio_data, np.ndarray):
audio_samples = audio_data
elif isinstance(audio_data, str):
audio_samples, sr = torchaudio.load(audio_data)
if sr != ASR_SAMPLING_RATE:
audio_samples = torchaudio.functional.resample(audio_samples, sr, ASR_SAMPLING_RATE)
audio_samples = audio_samples.numpy()
else:
return f"<<ERROR: Invalid Audio Input Instance: {type(audio_data)}>>"
# Extract language code (e.g., "eng" from "eng (English)")
lang_code = lang.split()[0]
# Validate if the language code is supported
if lang_code not in ASR_LANGUAGES:
return f"<<ERROR: Unsupported Language Code: {lang_code}>>"
try:
# Set target language and load adapter
processor.tokenizer.set_target_lang(lang_code)
model.load_adapter(lang_code)
except Exception as e:
return f"<<ERROR: Language Adaptation Failed: {str(e)}>>"
# Process audio and perform transcription
inputs = processor(audio_samples, sampling_rate=ASR_SAMPLING_RATE, return_tensors="pt").to("cuda")
with torch.no_grad(), autocast():
outputs = model(**inputs).logits
ids = torch.argmax(outputs, dim=-1)[0]
transcription = processor.decode(ids)
return transcription