Spaces:
Sleeping
Sleeping
File size: 1,359 Bytes
d3a6db8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 |
import streamlit as st
import numpy as np
from transformers import BertTokenizer, TFBertForSequenceClassification
import torch
@st.cache(allow_output_mutation=True)
def get_model():
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
model = TFBertForSequenceClassification.from_pretrained("lfernandopg/Proyecto-Transformers")
return tokenizer,model
tokenizer,model = get_model()
user_input = st.text_area('Enter Text to Analyze')
button = st.button("Analyze")
d = {
0 : 'Accountant',
1 : 'Actuary',
2 : 'Biologist',
3 : 'Chemist',
4 : 'Civil engineer',
5 : 'Computer programmer',
6 : 'Data scientist',
7 : 'Database administrator',
8 : 'Dentist',
9 : 'Economist',
10 : 'Environmental engineer',
11 : 'Financial analyst',
12 : 'IT manager',
13 : 'Mathematician',
14 : 'Mechanical engineer',
15 : 'Physician assistant',
16 : 'Psychologist',
17 : 'Statistician',
18 : 'Systems analyst',
19 : 'Technical writer ',
20 : 'Web developer '
}
if user_input and button :
test_sample = tokenizer([user_input], padding=True, truncation=True, max_length=512,return_tensors='pt')
# test_sample
output = model(**test_sample)
st.write("Logits: ",output.logits)
y_pred = np.argmax(output.logits.detach().numpy(),axis=1)
st.write("Prediction: ",d[y_pred[0]]) |