File size: 866 Bytes
a31ce15
9e7100a
35203cd
7bde0d2
ec94335
8e1216a
7bde0d2
da6c3e3
a31ce15
da6c3e3
c81cf2a
 
987de3d
35203cd
ec94335
 
 
 
 
 
 
7bde0d2
3cf8dc5
 
68f9cb7
9e7100a
3cf8dc5
68f9cb7
 
 
9e7100a
3cf8dc5
68f9cb7
3cf8dc5
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
import streamlit as st
from  PIL import Image
from io import BytesIO
import tensorflow as tf
import matplotlib.pyplot as plt
import numpy as np

model = tf.keras.models.load_model('modelo.h5')

file = st.file_uploader("Por favor suba una imagen de ropa (jpg, png, jpeg)", type=['jpg','png','jpeg'])
if file is not None:
    bytes_data = file.read()
    x = np.array(Image.open(BytesIO(bytes_data)).convert('L'))
    print(x.shape)
    x = x / 255.00
    plt.figure()
    plt.imshow(imagen, cmap=plt.cm.binary)
    plt.colorbar()
    plt.grid(False)
    plt.show()
    
    col1, col2, col3 = st.columns(3)

    with col1:
        st.write("")
    
    with col2:
        image = Image.open(file)
        st.markdown('<p style="text-align: center;">Image</p>',unsafe_allow_html=True)
        st.image(image,width=300)  
    
    with col3:
        st.write("")