Spaces:
Runtime error
Runtime error
File size: 1,164 Bytes
a31ce15 9e7100a 35203cd 7bde0d2 ec94335 8e1216a 7bde0d2 da6c3e3 a31ce15 f6511a9 04de8b3 b35746e c81cf2a 987de3d ec94335 57ecf45 94c3608 cfe1092 fd4da82 443069c d4b1d89 04de8b3 7bde0d2 3cf8dc5 68f9cb7 9e7100a 3cf8dc5 443069c 04de8b3 68f9cb7 9e7100a 3cf8dc5 68f9cb7 3cf8dc5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 |
import streamlit as st
from PIL import Image
from io import BytesIO
import tensorflow as tf
import matplotlib.pyplot as plt
import numpy as np
model = tf.keras.models.load_model('modelo.h5')
labels = ['T-shirt/top',
'Trouser',
'Pullover',
'Dress',
'Coat',
'Sandal',
'Shirt',
'Sneaker',
'Bag',
'Ankle boot']
file = st.file_uploader("Por favor suba una imagen de una prenda de ropa (jpg, png, jpeg)", type=['jpg','png','jpeg'])
if file is not None:
bytes_data = file.read()
x = np.array(Image.open(BytesIO(bytes_data)).convert('L'))
x = x / 255.00
x = np.expand_dims(x, axis=-1)
x = tf.image.resize(x, [80, 80])
x = np.repeat(x[:, :, np.newaxis], 3, axis=2)
x = np.squeeze(x)
x = np.expand_dims(x, axis=0)
prediction = model.predict(x)
index = np.argmax(prediction[0])
label = labels[index]
text = f"<p style='text-align: center;'>{label}</p>"
col1, col2, col3 = st.columns(3)
with col1:
st.write("")
with col2:
image = Image.open(file)
st.markdown(text,unsafe_allow_html=True)
st.image(image,width=300)
with col3:
st.write("")
|