import streamlit as st from PIL import Image from io import BytesIO import tensorflow as tf import matplotlib.pyplot as plt import numpy as np model = tf.keras.models.load_model('modelo.h5') labels = ['T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat', 'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot'] file = st.file_uploader("Por favor suba una imagen de ropa (jpg, png, jpeg)", type=['jpg','png','jpeg']) if file is not None: bytes_data = file.read() x = np.array(Image.open(BytesIO(bytes_data)).convert('L')) x = x / 255.00 x = np.expand_dims(x, axis=-1) x = tf.image.resize(x, [80, 80]) x = np.repeat(x[:, :, np.newaxis], 3, axis=2) x = np.squeeze(x) x = np.expand_dims(x, axis=0) prediction = model.predict(x) index = np.argmax(prediction[0]) label = labels[index] text = f"

{label}

" col1, col2, col3 = st.columns(3) with col1: st.write("") with col2: image = Image.open(file) st.markdown(text,unsafe_allow_html=True) st.image(image,width=300) with col3: st.write("")