--- title: Proyecto Final emoji: ⚡ colorFrom: red colorTo: indigo sdk: streamlit sdk_version: 1.15.2 app_file: app.py pinned: false license: mit --- ## Características El modelo es utilizado para la clasificación de imágenes, a través de una red neuronal convolucional, y de acuerdo a la metodología de aprendizaje se tiene que el área de estudio relacionada es el aprendizaje supervisado, ya que para su entrenamiento se utilizaron datos etiquetados. ## Construcción del modelo Para la construcción del modelo, se utilizó el modelo “InceptionV3”, cargado con los pesos pre-entrenados en “ImageNet”, también se utilizó la técnica de “fine-tuning”, donde para transferir el aprendizaje se base en congelar todas las capas y entrenar solo las capas superiores con los datos de entrenamiento relacionados a nuestro fin. ## Fuente de Datos El set de datos utilizado para el entrenamiento y prueba del modelo es “Fashion MNIST”, el cual posee 70mil imágenes de resolución 28x28, cada imagen esta etiquetada con una categoría de ropa ('T-shirt/top','Trouser','Pullover', 'Dress', 'Coat','Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot'). ## Propuesta de valor Se desea que el modelo pueda predecir con una alta precisión la categoría de una prenda de ropa dada a través de una imagen, en cuanto a la propuesta comercial puede ser de gran utilidad para la clasificación automática de inventario para una tienda de ropa. ## Predicciones Para realizar una predicción se necesita cargar una imagen de alguna prenda de ropa (solo una prenda) puede ser de cualquier resolución, pero en los siguientes formatos: (jpg, png, jpeg), una vez cargada la imagen se desplegará un texto con la categoría obtenida por el modelo junto con la imagen de la prenda. ## Monitoreo Para las métricas utilizadas para medir el desempeño del modelo, se tiene la precisión, donde el modelo alcanzó un 83% de precisión en el conjunto de datos prueba.