import torch torch.device('cpu') import chainlit as cl from faissdenseretrieval import initialize_documents, initialize_faiss_document_store, initialize_rag_pipeline import os from dotenv import load_dotenv # Load environment variables (if any) load_dotenv("../.env") load_dotenv() serp = os.getenv("SERP_API_KEY") openai_key = os.getenv("OPENAI_API_KEY") # Initialize documents documents = initialize_documents(serp_key=serp, nl_query="IMDB movie reviews for the Barbie movie (2023)") # Initialize document store and retriever document_store, retriever = initialize_faiss_document_store(documents=documents) # Initialize pipeline query_pipeline = initialize_rag_pipeline(retriever=retriever, openai_key=openai_key) @cl.on_message async def main(message: str): # Use the pipeline to get a response output = query_pipeline.run(query=message) # Create a Chainlit message with the response response = output['answers'][0].answer msg = cl.Message(content=response) # Send the message to the user await msg.send()