import torch torch.device('cpu') # Imports and Initializations for Chainlit import chainlit as cl from dotenv import load_dotenv # Imports and Initializations for Haystack from haystack.document_stores import InMemoryDocumentStore from datasets import load_dataset from haystack.nodes import BM25Retriever, PromptTemplate, AnswerParser, PromptNode import os from haystack.pipelines import Pipeline # Load environment variables (if any) load_dotenv(".env") load_dotenv() MY_API_KEY = os.getenv("OPENAI_API_KEY") # Initialize Haystack's QA system document_store = InMemoryDocumentStore(use_bm25=True) dataset = load_dataset("bilgeyucel/seven-wonders", split="train") document_store.write_documents(dataset) rag_prompt = PromptTemplate( prompt="""Synthesize a brief answer from the following text for the given question. Provide a clear and concise response that summarizes the key points and information presented in the text. Your answer should be in your own words and be no longer than 50 words. \n\n Related text: {join(documents)} \n\n Question: {query} \n\n Answer:""", output_parser=AnswerParser(), ) # Set up nodes retriever = BM25Retriever(document_store=document_store, top_k=2) pn = PromptNode("gpt-3.5-turbo", api_key=MY_API_KEY, model_kwargs={"stream":False}, default_prompt_template=rag_prompt) # Set up pipeline pipe = Pipeline() pipe.add_node(component=retriever, name="retriever", inputs=["Query"]) pipe.add_node(component=pn, name="prompt_node", inputs=["retriever"]) @cl.on_message async def main(message: str): # Use the pipeline to get a response output = pipe.run(query=message) # Create a Chainlit message with the response response = output['answers'][0].answer msg = cl.Message(content=response) # Send the message to the user await msg.send() if __name__ == "__main__": # You can add any Chainlit app initialization or run code here pass