Spaces:
Running
Running
import json | |
import os | |
import re | |
import subprocess | |
import time | |
import yaml | |
import gradio as gr | |
import pandas as pd | |
import requests | |
from huggingface_hub import HfApi, get_token | |
CMD = ["python" ,"run_job.py"] | |
ARG_NAMES = ["<src>", "<dst>", "<query>", "[-c config]", "[-s split]", "[-p private]"] | |
SPACE_ID = os.environ.get("SPACE_ID") or "lhoestq/run-duckdb-jobs" | |
CONTENT = """ | |
## Usage: | |
```bash | |
curl -L 'https://huggingface.co/api/jobs/<username>' \ | |
-H 'Content-Type: application/json' \ | |
-H 'Authorization: Bearer <hf_token>' \ | |
-d '{{ | |
"spaceId": "{SPACE_ID}", | |
"command": {CMD}, | |
"arguments": {ARG_NAMES}, | |
"environment": {{"HF_TOKEN": <hf_token>}}, | |
"flavor": "cpu-basic" | |
}}' | |
``` | |
## Example: | |
""" | |
with open("README.md") as f: | |
METADATA = yaml.safe_load(f.read().split("---\n")[1]) | |
TITLE = METADATA["title"] | |
SHORT_DESCRIPTION = METADATA.get("short_description") | |
EMOJI = METADATA["emoji"] | |
try: | |
process = subprocess.run(CMD + ["--help"], stdout=subprocess.PIPE, stderr=subprocess.PIPE) | |
HELP = not process.returncode and (process.stdout or process.stderr).decode() | |
except Exception: | |
HELP = False | |
DRY_RUN = bool(HELP) and bool(m :=re.search("--dry(-|_)run", HELP)) and m.group(0) | |
def parse_log(line: str, pbars: dict[str, float] = None): | |
if line.startswith("data: {"): | |
data = json.loads(line[len("data: "):]) | |
data, timestamp = data["data"], data["timestamp"] | |
if pbars is not None and data.startswith("===== Job started at"): | |
pbars.pop("Starting βοΈ", None) | |
pbars["Running π"] = 0.0 | |
return f"[{timestamp}] {data}\n\n" | |
elif pbars is not None and (percent_match := re.search("\\d+(?:\\.\\d+)?%", data)) and any(c in data.split("%")[1][:10] for c in "|ββ"): | |
pbars.pop("Running π", None) | |
[pbars.pop(desc) for desc, percent in pbars.items() if percent == 1.] | |
percent = float(percent_match.group(0)[:-1]) / 100 | |
desc = data[:percent_match.start()].strip() or "Progress" | |
pbars[desc] = percent | |
else: | |
return f"[{timestamp}] {data}\n\n" | |
return "" | |
def dry_run(src, config, split, dst, query): | |
if not all([src, dst, query]): | |
raise gr.Error("Please fill source, destination and query.") | |
args = ["--src", src] + (["--config", config] if config else []) + (["--split", split] if split else []) + [ "--dst", dst, "--query", query, DRY_RUN] | |
cmd = CMD + args | |
logs = "Job:\n\n```bash\n" + " ".join('"' + arg.replace('"', '\"""') + '"' if " " in arg else arg for arg in cmd) + "\n```\nOutput:\n\n" | |
yield {output_markdown: logs, progress_labels: gr.Label(visible=False), details_accordion: gr.Accordion(open=True)} | |
process = subprocess.Popen(cmd, stdout=subprocess.PIPE) | |
for line in iter(process.stdout.readline, b""): | |
logs += line.decode() | |
yield {output_markdown: logs} | |
def run(src, config, split, dst, query, oauth_token: gr.OAuthToken | None, profile: gr.OAuthProfile | None): | |
if not all([src, dst, query]): | |
raise gr.Error("Please fill source, destination and query.") | |
if oauth_token and profile: | |
token = oauth_token.token | |
username = profile.username | |
elif (token := get_token()): | |
username = HfApi().whoami(token=token)["name"] | |
else: | |
raise gr.Error("Please log in to run the job.") | |
args = ["--src", src] + (["--config", config] if config else []) + (["--split", split] if split else []) + [ "--dst", dst, "--query", query] | |
cmd = CMD + args | |
logs = "Job:\n\n```bash\n" + " ".join('"' + arg.replace('"', '\"""') + '"' if " " in arg else arg for arg in cmd) + "\n```\nOutput:\n\n" | |
pbars = {} | |
yield {output_markdown: logs, progress_labels: gr.Label(pbars, visible=bool(pbars))} | |
resp = requests.post( | |
f"https://huggingface.co/api/jobs/{username}", | |
json={ | |
"spaceId": SPACE_ID, | |
"arguments": args, | |
"command": CMD, | |
"environment": {"HF_TOKEN": token}, | |
"flavor": "cpu-basic" | |
}, | |
headers={"Authorization": f"Bearer {token}"} | |
) | |
if resp.status_code != 200: | |
logs += resp.text | |
pbars = {"Finished with an error β": 1.0} | |
else: | |
job_id = resp.json()["metadata"]["job_id"] | |
pbars = {"Starting βοΈ": 0.0} | |
yield {output_markdown: logs, progress_labels: gr.Label(pbars, visible=bool(pbars))} | |
resp = requests.get( | |
f"https://huggingface.co/api/jobs/{username}/{job_id}/logs-stream", | |
headers={"Authorization": f"Bearer {token}"}, | |
stream=True | |
) | |
for line in resp.iter_lines(): | |
logs += parse_log(line.decode("utf-8"), pbars=pbars) | |
yield {output_markdown: logs, progress_labels: gr.Label(pbars, visible=bool(pbars))} | |
job_status = {"status": {"stage": "RUNNING"}} | |
while True: | |
job_status = requests.get( | |
f"https://huggingface.co/api/jobs/{username}/{job_id}", | |
headers={"Authorization": f"Bearer {token}"} | |
).json() | |
if job_status["status"]["stage"] == "RUNNING": | |
time.sleep(1) | |
else: | |
break | |
if job_status["status"]["stage"] == "COMPLETED": | |
pbars = {"Finished β ": 1.0} | |
else: | |
logs += f'{job_status["status"]["message"]} ({job_status["status"]["error"]})' | |
pbars = {"Finished with an error β": 1.0} | |
yield {output_markdown: logs, progress_labels: gr.Label(pbars, visible=bool(pbars))} | |
READ_FUNCTIONS = ("pl.read_parquet", "pl.read_csv", "pl.read_json") | |
NUM_TRENDING_DATASETS = 10 | |
with gr.Blocks() as demo: | |
with gr.Row(): | |
with gr.Column(scale=10): | |
gr.Markdown(f"# {TITLE} {EMOJI}") | |
if SHORT_DESCRIPTION: | |
gr.Markdown(SHORT_DESCRIPTION) | |
with gr.Column(): | |
gr.LoginButton() | |
gr.Markdown(CONTENT.format(SPACE_ID=SPACE_ID, CMD=json.dumps(CMD), ARG_NAMES=json.dumps(ARG_NAMES))) | |
with gr.Row(): | |
with gr.Column(scale=10): | |
with gr.Row(): | |
loading_codes_json = gr.JSON([], visible=False) | |
dataset_dropdown = gr.Dropdown(label="Source Dataset", allow_custom_value=True, scale=10) | |
subset_dropdown = gr.Dropdown(info="Subset", allow_custom_value=True, show_label=False, visible=False) | |
split_dropdown = gr.Dropdown(info="Split", allow_custom_value=True, show_label=False, visible=False) | |
with gr.Column(min_width=60): | |
gr.HTML("<div style='font-size: 4em;'>β</div>") | |
with gr.Column(scale=10): | |
dst_dropdown = gr.Dropdown(label="Destination Dataset", allow_custom_value=True) | |
query_textarea = gr.Textbox(label="SQL Query", lines=2, max_lines=300, placeholder="SELECT * FROM src;", value="SELECT * FROM src;") | |
with gr.Row(): | |
run_button = gr.Button("Run", scale=10, variant="primary") | |
if DRY_RUN: | |
dry_run_button = gr.Button("Dry-Run") | |
progress_labels= gr.Label(visible=False, label="Progress") | |
with gr.Accordion("Details", open=False) as details_accordion: | |
output_markdown = gr.Markdown(label="Output logs") | |
run_button.click(run, inputs=[dataset_dropdown, subset_dropdown, split_dropdown, dst_dropdown, query_textarea], outputs=[details_accordion, progress_labels, output_markdown]) | |
if DRY_RUN: | |
dry_run_button.click(dry_run, inputs=[dataset_dropdown, subset_dropdown, split_dropdown, dst_dropdown, query_textarea], outputs=[details_accordion, progress_labels, output_markdown]) | |
def show_subset_dropdown(dataset: str): | |
if dataset and "/" not in dataset.strip().strip("/"): | |
return [] | |
resp = requests.get(f"https://datasets-server.huggingface.co/compatible-libraries?dataset={dataset}", timeout=3).json() | |
loading_codes = ([lib["loading_codes"] for lib in resp.get("libraries", []) if lib["function"] in READ_FUNCTIONS] or [[]])[0] or [] | |
subsets = [loading_code["config_name"] for loading_code in loading_codes] | |
subset = (subsets or [""])[0] | |
return dict(choices=subsets, value=subset, visible=len(subsets) > 1, key=hash(str(loading_codes))), loading_codes | |
def show_split_dropdown(subset: str, loading_codes: list[dict]): | |
splits = ([list(loading_code["arguments"]["splits"]) for loading_code in loading_codes if loading_code["config_name"] == subset] or [[]])[0] | |
split = (splits or [""])[0] | |
return dict(choices=splits, value=split, visible=len(splits) > 1, key=hash(str(loading_codes) + subset)) | |
def _fetch_datasets(request: gr.Request): | |
dataset = "CohereForAI/Global-MMLU" | |
datasets = [dataset] + [ds.id for ds in HfApi().list_datasets(limit=NUM_TRENDING_DATASETS, sort="trendingScore", direction=-1) if ds.id != dataset] | |
subsets, loading_codes = show_subset_dropdown(dataset) | |
splits = show_split_dropdown(subsets["value"], loading_codes) | |
return { | |
dataset_dropdown: gr.Dropdown(choices=datasets, value=dataset), | |
loading_codes_json: loading_codes, | |
subset_dropdown: gr.Dropdown(**subsets), | |
split_dropdown: gr.Dropdown(**splits), | |
} | |
def _show_subset_dropdown(dataset: str): | |
subsets, loading_codes = show_subset_dropdown(dataset) | |
splits = show_split_dropdown(subsets["value"], loading_codes) | |
return { | |
subset_dropdown: gr.Dropdown(**subsets), | |
split_dropdown: gr.Dropdown(**splits), | |
} | |
def _show_split_dropdown(dataset: str, subset: str, loading_codes: list[dict]): | |
splits = show_split_dropdown(subset, loading_codes) | |
return { | |
split_dropdown: gr.Dropdown(**splits), | |
} | |
if HELP: | |
with demo.route("Help", "/help"): | |
gr.Markdown(f"# Help\n\n```\n{HELP}\n```") | |
with demo.route("Jobs", "/jobs") as page: | |
gr.Markdown("# Jobs") | |
jobs_dataframe = gr.DataFrame(datatype="markdown") | |
def list_jobs(oauth_token: gr.OAuthToken | None, profile: gr.OAuthProfile | None): | |
if oauth_token and profile: | |
token = oauth_token.token | |
username = profile.username | |
elif (token := get_token()): | |
username = HfApi().whoami(token=token)["name"] | |
else: | |
return pd.DataFrame({"Log in to see jobs": []}) | |
resp = requests.get( | |
f"https://huggingface.co/api/jobs/{username}", | |
headers={"Authorization": f"Bearer {token}"} | |
) | |
return pd.DataFrame([ | |
{ | |
"id": job["metadata"]["id"], | |
"created_at": job["metadata"]["created_at"], | |
"stage": job["compute"]["status"]["stage"], | |
"output": f'[logs](https://huggingface.co/api/jobs/{username}/{job["metadata"]["id"]}/logs-stream)', | |
"command": str(job["compute"]["spec"]["extra"]["command"]), | |
"args": str(job["compute"]["spec"]["extra"]["args"]), | |
} | |
for job in resp.json() | |
if job["compute"]["spec"]["extra"]["input"]["spaceId"] == SPACE_ID | |
]) | |
if __name__ == "__main__": | |
demo.launch(server_name="0.0.0.0") | |