Spaces:
Sleeping
Sleeping
File size: 5,696 Bytes
e76f467 41eb2e8 fcb27fb 41eb2e8 a827413 b7eba49 e423e8d 0b22058 f48ecfa b7eba49 cb202cc b7eba49 cb202cc 0b22058 f1089d7 91ff99e f1089d7 b7eba49 cb202cc b7eba49 d8c88bb 0b22058 b7eba49 cb202cc 85408e4 c92760e 0b22058 1b50209 41eb2e8 b7eba49 41eb2e8 b7eba49 e423e8d 41eb2e8 bcf76f5 113b7ab bcf76f5 05d12ce bcf76f5 05d12ce bcf76f5 05d12ce bcf76f5 05d12ce bcf76f5 b7eba49 bcf76f5 b7eba49 bcf76f5 b7eba49 bcf76f5 41eb2e8 546365b 41eb2e8 0b22058 b7eba49 0b22058 e423e8d 0b22058 b7eba49 0b22058 85408e4 e76f467 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 |
import os
import gradio as gr
import json
from gradio_client import Client
with open('loras.json', 'r') as f:
loras = json.load(f)
job = None
def infer(selected_index, prompt, style_prompt, inf_steps, guidance_scale, width, height, seed, lora_weight, progress=gr.Progress(track_tqdm=True)):
global job
if selected_index is None:
raise gr.Error("You must select a LoRA before proceeding.")
selected_lora = loras[selected_index]
custom_model = selected_lora["repo"]
trigger_word = selected_lora["trigger_word"]
client = Client("fffiloni/sd-xl-custom-model")
result = client.submit(
custom_model=custom_model,
api_name="/load_model"
)
weight_name = result.result()[2]['value']
client = Client("fffiloni/sd-xl-custom-model")
prompt_arr = [trigger_word, prompt, style_prompt]
prompt = '. '.join([element.strip() for element in prompt_arr if element.strip() != ''])
job = client.submit(
custom_model=custom_model,
weight_name=weight_name,
prompt=prompt,
inf_steps=inf_steps,
guidance_scale=guidance_scale,
width=width,
height=height,
seed=seed,
lora_weight=lora_weight,
api_name="/infer"
)
result = job.result()
new_result = result + (prompt, )
return new_result
def cancel_infer():
global job
if job:
job.cancel()
return "Job has been cancelled"
return "No job to cancel"
def update_selection(evt: gr.SelectData):
selected_lora = loras[evt.index]
new_placeholder = f"Type a prompt for {selected_lora['title']}"
lora_repo = selected_lora["repo"]
updated_text = f"### Selected: [{lora_repo}](https://huggingface.co/{lora_repo}) ✨"
return (
gr.update(placeholder=new_placeholder),
updated_text,
evt.index
)
css="""
"""
with gr.Blocks(css=css) as demo:
gr.Markdown("# lichorosario LoRA Portfolio")
gr.Markdown(
"### This is my portfolio.\n"
"**Note**: Generation quality may vary. For best results, adjust the parameters.\n"
"Special thanks to [@artificialguybr](https://huggingface.co/artificialguybr) and [@fffiloni](https://huggingface.co/fffiloni)."
)
with gr.Row():
with gr.Column(scale=2):
prompt_in = gr.Textbox(
label="Your Prompt",
info="Don't forget to include your trigger word if necessary"
)
style_prompt_in = gr.Textbox(
label="Your Style Prompt"
)
selected_info = gr.Markdown("")
used_prompt = gr.Textbox(
label="Used prompt"
)
with gr.Column(elem_id="col-container"):
with gr.Accordion("Advanced Settings", open=False):
with gr.Row():
inf_steps = gr.Slider(
label="Inference steps",
minimum=12,
maximum=100,
step=1,
value=25
)
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.0,
maximum=50.0,
step=0.1,
value=12
)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=3072,
step=32,
value=2048,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=3072,
step=32,
value=1024,
)
with gr.Row():
seed = gr.Slider(
label="Seed",
info="-1 denotes a random seed",
minimum=-1,
maximum=423538377342,
step=1,
value=-1
)
last_used_seed = gr.Number(
label="Last used seed",
info="the seed used in the last generation",
)
lora_weight = gr.Slider(
label="LoRa weight",
minimum=0.0,
maximum=1.0,
step=0.01,
value=1.0
)
with gr.Column(scale=1):
gallery = gr.Gallery(
[(item["image"], item["title"]) for item in loras],
label="LoRA Gallery",
allow_preview=False,
columns=2,
height="100%"
)
submit_btn = gr.Button("Submit")
cancel_btn = gr.Button("Cancel")
image_out = gr.Image(label="Image output")
selected_index = gr.State(None)
submit_btn.click(
fn=infer,
inputs=[selected_index, prompt_in, style_prompt_in, inf_steps, guidance_scale, width, height, seed, lora_weight],
outputs=[image_out, last_used_seed, used_prompt]
)
cancel_btn.click(
fn=cancel_infer,
outputs=[]
)
gallery.select(update_selection, outputs=[prompt_in, selected_info, selected_index])
demo.launch()
|