import gradio as gr import torch import modin.pandas as pd from diffusers import DiffusionPipeline device = "cuda" if torch.cuda.is_available() else "cpu" if torch.cuda.is_available(): PYTORCH_CUDA_ALLOC_CONF={'max_split_size_mb': 6000} torch.cuda.max_memory_allocated(device=device) torch.cuda.empty_cache() pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16, variant="fp16", use_safetensors=True) pipe.enable_xformers_memory_efficient_attention() pipe = pipe.to(device) torch.cuda.empty_cache() refiner = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0", use_safetensors=True, torch_dtype=torch.float16, variant="fp16") refiner.enable_xformers_memory_efficient_attention() refiner.enable_sequential_cpu_offload() else: pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", use_safetensors=True) pipe = pipe.to(device) refiner = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0", use_safetensors=True) refiner = refiner.to(device) def genie (prompt, negative_prompt, height, width, scale, steps, seed, strength): generator = torch.Generator(device=device).manual_seed(seed) int_image = pipe(prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale, num_images_per_prompt=1, generator=generator, output_type="latent").images image = refiner(prompt=prompt, negative_prompt=negative_prompt, image=int_image).images[0] return image gr.Interface(fn=genie, inputs=[gr.Textbox(label='Что вы хотите, чтобы ИИ генерировал'), gr.Textbox(label='Что вы не хотите, чтобы ИИ генерировал'), gr.Slider(512, 1024, 768, step=128, label='Высота'), gr.Slider(512, 1024, 768, step=128, label='Ширина'), gr.Slider(1, 15, 10, label='Шкала навигации'), gr.Slider(25, maximum=50, value=25, step=1, label='Количество итераций'), gr.Slider(label="Зерно", minimum=0, maximum=987654321987654321, step=1, randomize=True), gr.Slider(label='Сила', minimum=0, maximum=1, step=.05, value=.5)], outputs='image', title="Стабильная Диффузия - SDXL - txt2img", article = "




").launch(debug=True, max_threads=80)