Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -14,10 +14,13 @@ from huggingface_hub import hf_hub_download
|
|
14 |
MAX_SEED = np.iinfo(np.int32).max
|
15 |
MAX_IMAGE_SIZE = 1024
|
16 |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
|
|
|
|
17 |
|
18 |
|
19 |
pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-dev",
|
20 |
-
|
21 |
torch_dtype=torch.bfloat16)
|
22 |
|
23 |
#pipe.enable_lora()
|
@@ -44,65 +47,85 @@ def resize_img(image, max_size=1024):
|
|
44 |
new_height = int(height * scaling_factor)
|
45 |
return image.resize((new_width, new_height), Image.LANCZOS)
|
46 |
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
|
56 |
def check_hyper_flux_lora(enable_hyper_flux):
|
57 |
if enable_hyper_flux:
|
58 |
pipe.load_lora_weights(hf_hub_download("ByteDance/Hyper-SD", "Hyper-FLUX.1-dev-8steps-lora.safetensors"), lora_scale=0.125)
|
59 |
pipe.fuse_lora(lora_scale=0.125)
|
60 |
-
return 8, 8
|
61 |
else:
|
62 |
pipe.unfuse_lora()
|
63 |
-
return 28, 28
|
64 |
|
65 |
@spaces.GPU(duration=85)
|
66 |
-
def invert_and_edit(image,
|
67 |
-
|
68 |
-
|
69 |
-
gamma,
|
70 |
-
start_timestep,
|
71 |
-
stop_timestep,
|
72 |
num_inversion_steps,
|
73 |
num_inference_steps,
|
74 |
seed,
|
75 |
randomize_seed,
|
76 |
-
eta_decay,
|
77 |
-
decay_power,
|
78 |
width = 1024,
|
79 |
height = 1024,
|
80 |
-
|
81 |
-
image_latents = None,
|
82 |
-
latent_image_ids = None,
|
83 |
do_inversion = True,
|
84 |
|
85 |
):
|
86 |
if randomize_seed:
|
87 |
seed = random.randint(0, MAX_SEED)
|
88 |
if do_inversion:
|
89 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
90 |
do_inversion = False
|
91 |
|
92 |
|
93 |
-
output = pipe(
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
|
|
|
|
104 |
|
105 |
-
return output,
|
106 |
|
107 |
# UI CSS
|
108 |
css = """
|
@@ -116,19 +139,14 @@ css = """
|
|
116 |
with gr.Blocks(css=css) as demo:
|
117 |
|
118 |
inverted_latents = gr.State()
|
119 |
-
image_latents = gr.State()
|
120 |
-
latent_image_ids = gr.State()
|
121 |
do_inversion = gr.State(True)
|
122 |
|
123 |
with gr.Column(elem_id="col-container"):
|
124 |
-
gr.Markdown(f"""#
|
125 |
### Edit real images with FLUX.1 [dev]
|
126 |
-
following the algorithm proposed in [*
|
127 |
-
Stochastic Rectified Differential Equations* by Rout et al.](https://rf-inversion.github.io/data/rf-inversion.pdf)
|
128 |
-
|
129 |
-
based on the implementations of [@raven38](https://github.com/raven38) & [@DarkMnDragon](https://github.com/DarkMnDragon) 🙌🏻
|
130 |
|
131 |
-
[[non-commercial license](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md)] [[project page](https://
|
132 |
""")
|
133 |
|
134 |
with gr.Row():
|
@@ -137,39 +155,20 @@ based on the implementations of [@raven38](https://github.com/raven38) & [@DarkM
|
|
137 |
label="Input Image",
|
138 |
type="pil"
|
139 |
)
|
140 |
-
|
|
|
|
|
|
|
|
|
|
|
141 |
label="Edit Prompt",
|
142 |
max_lines=1,
|
143 |
placeholder="describe the edited output",
|
144 |
)
|
145 |
with gr.Row():
|
146 |
enable_hyper_flux = gr.Checkbox(label="8-step LoRA", value=False, info="may reduce edit quality", visible=False)
|
147 |
-
|
148 |
-
|
149 |
-
start_timestep = gr.Slider(
|
150 |
-
label="start timestep",
|
151 |
-
info = "increase to enhance fidelity, decrease to enhance realism",
|
152 |
-
minimum=0,
|
153 |
-
maximum=28,
|
154 |
-
step=1,
|
155 |
-
value=0,
|
156 |
-
)
|
157 |
-
stop_timestep = gr.Slider(
|
158 |
-
label="stop timestep",
|
159 |
-
info = "increase to enhace fidelity to original image",
|
160 |
-
minimum=0,
|
161 |
-
maximum=28,
|
162 |
-
step=1,
|
163 |
-
value=6,
|
164 |
-
)
|
165 |
-
eta = gr.Slider(
|
166 |
-
label="eta",
|
167 |
-
info = "lower eta to ehnace the edits",
|
168 |
-
minimum=0.0,
|
169 |
-
maximum=1.0,
|
170 |
-
step=0.01,
|
171 |
-
value=0.9,
|
172 |
-
)
|
173 |
|
174 |
run_button = gr.Button("Edit", variant="primary")
|
175 |
|
@@ -193,32 +192,18 @@ based on the implementations of [@raven38](https://github.com/raven38) & [@DarkM
|
|
193 |
minimum=1,
|
194 |
maximum=50,
|
195 |
step=1,
|
196 |
-
value=
|
197 |
-
)
|
198 |
-
eta_decay = gr.Checkbox(label="eta decay", value=False)
|
199 |
-
decay_power = gr.Slider(
|
200 |
-
label="eta decay power",
|
201 |
-
minimum=0,
|
202 |
-
maximum=5,
|
203 |
-
step=1,
|
204 |
-
value=1,
|
205 |
)
|
|
|
206 |
|
207 |
with gr.Row():
|
208 |
-
|
209 |
-
label="gamma",
|
210 |
-
info = "increase gamma to enhance realism",
|
211 |
-
minimum=0.0,
|
212 |
-
maximum=1.0,
|
213 |
-
step=0.01,
|
214 |
-
value=0.5,
|
215 |
-
)
|
216 |
num_inversion_steps = gr.Slider(
|
217 |
label="num inversion steps",
|
218 |
minimum=1,
|
219 |
maximum=50,
|
220 |
step=1,
|
221 |
-
value=
|
222 |
)
|
223 |
|
224 |
with gr.Row():
|
@@ -244,34 +229,27 @@ based on the implementations of [@raven38](https://github.com/raven38) & [@DarkM
|
|
244 |
fn=invert_and_edit,
|
245 |
inputs=[
|
246 |
input_image,
|
247 |
-
|
248 |
-
|
249 |
-
gamma,
|
250 |
-
start_timestep,
|
251 |
-
stop_timestep,
|
252 |
num_inversion_steps,
|
253 |
num_inference_steps,
|
254 |
seed,
|
255 |
randomize_seed,
|
256 |
-
eta_decay,
|
257 |
-
decay_power,
|
258 |
width,
|
259 |
height,
|
260 |
inverted_latents,
|
261 |
-
image_latents,
|
262 |
-
latent_image_ids,
|
263 |
do_inversion
|
264 |
|
265 |
],
|
266 |
-
outputs=[result, inverted_latents,
|
267 |
)
|
268 |
|
269 |
-
gr.Examples(
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
|
274 |
-
|
275 |
|
276 |
input_image.change(
|
277 |
fn=reset_do_inversion,
|
@@ -288,16 +266,11 @@ based on the implementations of [@raven38](https://github.com/raven38) & [@DarkM
|
|
288 |
outputs=[do_inversion]
|
289 |
)
|
290 |
|
291 |
-
stylezation.change(
|
292 |
-
fn=check_style,
|
293 |
-
inputs=[stylezation],
|
294 |
-
outputs=[eta, gamma, start_timestep, stop_timestep, num_inversion_steps, num_inference_steps, eta_decay]
|
295 |
-
)
|
296 |
|
297 |
enable_hyper_flux.change(
|
298 |
fn=check_hyper_flux_lora,
|
299 |
inputs=[enable_hyper_flux],
|
300 |
-
outputs=[num_inversion_steps, num_inference_steps
|
301 |
)
|
302 |
|
303 |
|
|
|
14 |
MAX_SEED = np.iinfo(np.int32).max
|
15 |
MAX_IMAGE_SIZE = 1024
|
16 |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
17 |
+
import numpy as np
|
18 |
+
MULTIMODAL_VITAL_LAYERS = [0, 1, 17, 18]
|
19 |
+
SINGLE_MODAL_VITAL_LAYERS = list(np.array([28, 53, 54, 56, 25]) - 19)
|
20 |
|
21 |
|
22 |
pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-dev",
|
23 |
+
|
24 |
torch_dtype=torch.bfloat16)
|
25 |
|
26 |
#pipe.enable_lora()
|
|
|
47 |
new_height = int(height * scaling_factor)
|
48 |
return image.resize((new_width, new_height), Image.LANCZOS)
|
49 |
|
50 |
+
@torch.no_grad()
|
51 |
+
def image2latent(image, latent_nudging_scalar = 1.15):
|
52 |
+
image = pipe.image_processor.preprocess(image, height=1024, width=1024,).type(pipe.vae.dtype).to("cuda")
|
53 |
+
latents = pipe.vae.encode(image)["latent_dist"].mean
|
54 |
+
latents = (latents - pipe.vae.config.shift_factor) * pipe.vae.config.scaling_factor
|
55 |
+
latents = latents * latent_nudging_scalar
|
56 |
+
|
57 |
+
height = pipe.default_sample_size * pipe.vae_scale_factor
|
58 |
+
width = pipe.default_sample_size * pipe.vae_scale_factor
|
59 |
+
|
60 |
+
num_channels_latents = pipe.transformer.config.in_channels // 4
|
61 |
+
height = 2 * (height // (pipe.vae_scale_factor * 2))
|
62 |
+
width = 2 * (width // (pipe.vae_scale_factor * 2))
|
63 |
+
|
64 |
+
latents = pipe._pack_latents(
|
65 |
+
latents=latents,
|
66 |
+
batch_size=1,
|
67 |
+
num_channels_latents=num_channels_latents,
|
68 |
+
height=height,
|
69 |
+
width=width
|
70 |
+
)
|
71 |
+
|
72 |
+
return latents
|
73 |
|
74 |
def check_hyper_flux_lora(enable_hyper_flux):
|
75 |
if enable_hyper_flux:
|
76 |
pipe.load_lora_weights(hf_hub_download("ByteDance/Hyper-SD", "Hyper-FLUX.1-dev-8steps-lora.safetensors"), lora_scale=0.125)
|
77 |
pipe.fuse_lora(lora_scale=0.125)
|
78 |
+
return 8, 8
|
79 |
else:
|
80 |
pipe.unfuse_lora()
|
81 |
+
return 28, 28
|
82 |
|
83 |
@spaces.GPU(duration=85)
|
84 |
+
def invert_and_edit(image,
|
85 |
+
source_prompt
|
86 |
+
edit_prompt,
|
|
|
|
|
|
|
87 |
num_inversion_steps,
|
88 |
num_inference_steps,
|
89 |
seed,
|
90 |
randomize_seed,
|
|
|
|
|
91 |
width = 1024,
|
92 |
height = 1024,
|
93 |
+
inverted_latent_list = None,
|
|
|
|
|
94 |
do_inversion = True,
|
95 |
|
96 |
):
|
97 |
if randomize_seed:
|
98 |
seed = random.randint(0, MAX_SEED)
|
99 |
if do_inversion:
|
100 |
+
inverted_latent_list = pipe(
|
101 |
+
source_prompt,
|
102 |
+
height=1024,
|
103 |
+
width=1024,
|
104 |
+
guidance_scale=1,
|
105 |
+
output_type="pil",
|
106 |
+
num_inference_steps=50,
|
107 |
+
max_sequence_length=512,
|
108 |
+
latents=image2latent(image),
|
109 |
+
invert_image=True
|
110 |
+
)
|
111 |
do_inversion = False
|
112 |
|
113 |
|
114 |
+
output = pipe(
|
115 |
+
[source_prompt, edit_prompt]
|
116 |
+
height=1024,
|
117 |
+
width=1024,
|
118 |
+
guidance_scale=[1] + [3] * (len(prompts) - 1),
|
119 |
+
output_type="pil",
|
120 |
+
num_inference_steps=50,
|
121 |
+
max_sequence_length=512,
|
122 |
+
latents=inverted_latent_list[-1].tile(len(prompts), 1, 1),
|
123 |
+
inverted_latent_list=inverted_latent_list,
|
124 |
+
mm_copy_blocks=MULTIMODAL_VITAL_LAYERS,
|
125 |
+
single_copy_blocks=SINGLE_MODAL_VITAL_LAYERS,
|
126 |
+
).images
|
127 |
|
128 |
+
return output, inverted_latent_list.cpu(), do_inversion, seed
|
129 |
|
130 |
# UI CSS
|
131 |
css = """
|
|
|
139 |
with gr.Blocks(css=css) as demo:
|
140 |
|
141 |
inverted_latents = gr.State()
|
|
|
|
|
142 |
do_inversion = gr.State(True)
|
143 |
|
144 |
with gr.Column(elem_id="col-container"):
|
145 |
+
gr.Markdown(f"""# Stable Flow 🖌️🏞️
|
146 |
### Edit real images with FLUX.1 [dev]
|
147 |
+
following the algorithm proposed in [*Stable Flow: Vital Layers for Training-Free Image Editing* by Avrahami et al.](https://arxiv.org/pdf/2411.14430)
|
|
|
|
|
|
|
148 |
|
149 |
+
[[non-commercial license](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md)] [[project page](https://omriavrahami.com/stable-flow/) [[arxiv](https://arxiv.org/pdf/2411.14430)]
|
150 |
""")
|
151 |
|
152 |
with gr.Row():
|
|
|
155 |
label="Input Image",
|
156 |
type="pil"
|
157 |
)
|
158 |
+
source_prompt = gr.Text(
|
159 |
+
label="Source Prompt",
|
160 |
+
max_lines=1,
|
161 |
+
placeholder="describe the edited output",
|
162 |
+
)
|
163 |
+
edit_prompt = gr.Text(
|
164 |
label="Edit Prompt",
|
165 |
max_lines=1,
|
166 |
placeholder="describe the edited output",
|
167 |
)
|
168 |
with gr.Row():
|
169 |
enable_hyper_flux = gr.Checkbox(label="8-step LoRA", value=False, info="may reduce edit quality", visible=False)
|
170 |
+
|
171 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
172 |
|
173 |
run_button = gr.Button("Edit", variant="primary")
|
174 |
|
|
|
192 |
minimum=1,
|
193 |
maximum=50,
|
194 |
step=1,
|
195 |
+
value=18,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
196 |
)
|
197 |
+
|
198 |
|
199 |
with gr.Row():
|
200 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
201 |
num_inversion_steps = gr.Slider(
|
202 |
label="num inversion steps",
|
203 |
minimum=1,
|
204 |
maximum=50,
|
205 |
step=1,
|
206 |
+
value=50,
|
207 |
)
|
208 |
|
209 |
with gr.Row():
|
|
|
229 |
fn=invert_and_edit,
|
230 |
inputs=[
|
231 |
input_image,
|
232 |
+
source_prompt,
|
233 |
+
edit_prompt,
|
|
|
|
|
|
|
234 |
num_inversion_steps,
|
235 |
num_inference_steps,
|
236 |
seed,
|
237 |
randomize_seed,
|
|
|
|
|
238 |
width,
|
239 |
height,
|
240 |
inverted_latents,
|
|
|
|
|
241 |
do_inversion
|
242 |
|
243 |
],
|
244 |
+
outputs=[result, inverted_latents, do_inversion, seed],
|
245 |
)
|
246 |
|
247 |
+
# gr.Examples(
|
248 |
+
# examples=get_examples(),
|
249 |
+
# inputs=[input_image,result, prompt, num_inversion_steps, num_inference_steps, seed, randomize_seed, enable_hyper_flux ],
|
250 |
+
# outputs=[result],
|
251 |
|
252 |
+
# )
|
253 |
|
254 |
input_image.change(
|
255 |
fn=reset_do_inversion,
|
|
|
266 |
outputs=[do_inversion]
|
267 |
)
|
268 |
|
|
|
|
|
|
|
|
|
|
|
269 |
|
270 |
enable_hyper_flux.change(
|
271 |
fn=check_hyper_flux_lora,
|
272 |
inputs=[enable_hyper_flux],
|
273 |
+
outputs=[num_inversion_steps, num_inference_steps]
|
274 |
)
|
275 |
|
276 |
|