File size: 8,804 Bytes
6230dda
 
0d0a1c2
6230dda
 
 
 
 
 
 
 
 
 
 
 
0d0a1c2
 
6230dda
 
0d0a1c2
 
6230dda
 
 
 
 
 
 
 
 
 
0d0a1c2
6230dda
0d0a1c2
6230dda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0d0a1c2
6230dda
 
0d0a1c2
6230dda
 
0d0a1c2
6230dda
0d0a1c2
 
 
6230dda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0d0a1c2
6230dda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0d0a1c2
 
6230dda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0d0a1c2
6230dda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0d0a1c2
6230dda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0d0a1c2
6230dda
 
 
 
 
 
 
 
 
 
 
 
 
0d0a1c2
 
 
 
 
6230dda
 
0d0a1c2
 
 
 
 
6230dda
0d0a1c2
 
6230dda
 
0d0a1c2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
import gradio as gr
from multiprocessing import cpu_count
from pathlib import Path
from src.ui_shared import (
    model_ids,
    scheduler_names,
    default_scheduler,
    controlnet_ids,
    assets_directory,
)

from src.ui_functions import generate, run_training

default_img_size = 512


with open(f"{assets_directory}/header.MD") as fp:
    header = fp.read()


with open(f"{assets_directory}/footer.MD") as fp:
    footer = fp.read()


theme = gr.themes.Soft(
    primary_hue="blue",
    neutral_hue="slate",
)

with gr.Blocks(theme=theme) as demo:

    header_component = gr.Markdown(header)

    with gr.Row().style(equal_height=True):
        with gr.Column(scale=70):
            prompt = gr.Textbox(
                label="Prompt", placeholder="Press <Shift+Enter> to generate", lines=2
            )
            neg_prompt = gr.Textbox(label="Negative Prompt", placeholder="", lines=2)

            with gr.Row():
                controlnet_prompt = gr.Textbox(
                    label="Controlnet Prompt",
                    placeholder="If empty, defaults to base `Prompt`",
                    lines=2,
                )

                controlnet_negative_prompt = gr.Textbox(
                    label="Controlnet Negative Prompt",
                    placeholder="If empty, defaults to base `Negative Prompt`",
                    lines=2,
                )

        with gr.Column(scale=30):
            model_name = gr.Dropdown(
                label="Model", choices=model_ids, value=model_ids[0], allow_custom_value=True
            )
            controlnet_name = gr.Dropdown(
                label="Controlnet", choices=controlnet_ids, value=controlnet_ids[0], allow_custom_value=True
            )
            scheduler_name = gr.Dropdown(
                label="Scheduler", choices=scheduler_names, value=default_scheduler, allow_custom_value=True
            )
            with gr.Row():
                generate_button = gr.Button(value="Generate", variant="primary")
                dark_mode_btn = gr.Button("Dark Mode", variant="secondary")

    with gr.Row():
        with gr.Column():
            with gr.Tab("Inference") as tab:

                guidance_image = gr.Image(
                    label="Guidance Image",
                    source="upload",
                    tool="editor",
                    type="pil",
                ).style(height=256)

                with gr.Row():
                    controlnet_cond_scale = gr.Slider(
                        label="Controlnet Weight",
                        value=0.5,
                        minimum=0.0,
                        maximum=1.0,
                        step=0.1,
                    )

                with gr.Row():
                    batch_size = gr.Slider(
                        label="Batch Size", value=1, minimum=1, maximum=8, step=1
                    )
                    seed = gr.Slider(-1, 2147483647, label="Seed", value=-1, step=1)

                with gr.Row():
                    guidance = gr.Slider(
                        label="Guidance scale", value=7.5, minimum=0, maximum=20
                    )
                    steps = gr.Slider(
                        label="Steps", value=20, minimum=1, maximum=100, step=1
                    )

                with gr.Row():
                    width = gr.Slider(
                        label="Width",
                        value=default_img_size,
                        minimum=64,
                        maximum=1024,
                        step=32,
                    )
                    height = gr.Slider(
                        label="Height",
                        value=default_img_size,
                        minimum=64,
                        maximum=1024,
                        step=32,
                    )


            with gr.Tab("Train Anime ControlNet") as tab:
                with gr.Row():
                    train_batch_size = gr.Slider(
                        label="Training Batch Size",
                        minimum=1,
                        maximum=8,
                        step=1,
                        value=1,
                    )

                    gradient_accumulation_steps = gr.Slider(
                        label="Gradient Accumulation steps",
                        minimum=1,
                        maximum=6,
                        step=1,
                        value=4,
                    )

                with gr.Row():
                    num_train_epochs = gr.Number(
                        label="Total training epochs", value=2
                    )
                    train_learning_rate = gr.Number(label="Learning Rate", value=5.0e-6)

                with gr.Row():
                    checkpointing_steps = gr.Number(
                        label="Steps between saving checkpoints", value=4000
                    )
                    image_logging_steps = gr.Number(
                        label="Steps between logging example images (pass 0 to disable)",
                        value=0,
                    )

                with gr.Row():
                    train_data_dir = gr.Textbox(
                        label=f"Path to training image folder",
                        value="lint/anybooru",
                    )
                    valid_data_dir = gr.Textbox(
                        label=f"Path to validation image folder",
                        value="",
                    )

                with gr.Row():
                    controlnet_weights_path = gr.Textbox(
                        label=f"Repo for initializing Controlnet Weights",
                        value="lint/anime_control/anime_merge",
                    )
                    output_dir = gr.Textbox(
                        label=f"Output directory for trained weights", value="./models"
                    )

                with gr.Row():
                    train_whole_controlnet = gr.Checkbox(
                        label="Train whole controlnet", value=True
                    )
                    save_whole_pipeline = gr.Checkbox(
                        label="Save whole pipeline", value=True
                    )

                training_button = gr.Button(
                    value="Train Style ControlNet", variant="primary"
                )

                training_status = gr.Text(label="Training Status")


        with gr.Column():
            gallery = gr.Gallery(
                label="Generated images", show_label=False, elem_id="gallery"
            ).style(height=default_img_size, grid=2)

            generation_details = gr.Markdown()

            # pipe_kwargs = gr.Textbox(label="Pipe kwargs", value="{\n\t\n}", visible=False)

            # if torch.cuda.is_available():
            #  giga = 2**30
            #  vram_guage = gr.Slider(0, torch.cuda.memory_reserved(0)/giga, label='VRAM Allocated to Reserved (GB)', value=0, step=1)
            #  demo.load(lambda : torch.cuda.memory_allocated(0)/giga, inputs=[], outputs=vram_guage, every=0.5, show_progress=False)

    footer_component = gr.Markdown(footer)

    inputs = [
        model_name,
        guidance_image,
        controlnet_name,
        scheduler_name,
        prompt,
        guidance,
        steps,
        batch_size,
        width,
        height,
        seed,
        neg_prompt,
        controlnet_prompt,
        controlnet_negative_prompt,
        controlnet_cond_scale,
        # pipe_kwargs,
    ]
    outputs = [gallery, generation_details]

    prompt.submit(generate, inputs=inputs, outputs=outputs)
    generate_button.click(generate, inputs=inputs, outputs=outputs)

    training_inputs = [
        model_name,
        controlnet_weights_path,
        train_data_dir,
        valid_data_dir,
        train_batch_size,
        train_whole_controlnet,
        gradient_accumulation_steps,
        num_train_epochs,
        train_learning_rate,
        output_dir,
        checkpointing_steps,
        image_logging_steps,
        save_whole_pipeline,
    ]

    training_button.click(
        run_training,
        inputs=training_inputs,
        outputs=[training_status],
    )

    # from gradio.themes.builder
    toggle_dark_mode_args = dict(
        fn=None,
        inputs=None,
        outputs=None,
        _js="""() => {
        if (document.querySelectorAll('.dark').length) {
                document.querySelectorAll('.dark').forEach(el => el.classList.remove('dark'));
            } else {
                document.querySelector('body').classList.add('dark');
            }
        }""",
    )
    demo.load(**toggle_dark_mode_args)
    dark_mode_btn.click(**toggle_dark_mode_args)

if __name__ == "__main__":
    demo.queue(concurrency_count=cpu_count()).launch(favicon_path=favicon_path)