File size: 4,315 Bytes
6230dda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
from pathlib import Path
from PIL import Image
import torchvision
import random

from torch.utils.data import Dataset, DataLoader
from functools import partial
from multiprocessing import cpu_count
from datasets import load_dataset

import cv2
import numpy as np
import torch


class PNGDataset(Dataset):
    def __init__(
        self,
        data_dir,
        tokenizer,
        from_hf_hub=False,
        ucg=0.10,
        resolution=(512, 512),
        prompt_key="tags",
        cond_key="cond",
        target_key="image",
        controlnet_hint_key=None,
        file_extension="png",
    ):
        super().__init__()
        vars(self).update(locals())

        if from_hf_hub:
            self.img_paths = load_dataset(data_dir)["train"]
        else:
            self.img_paths = list(Path(data_dir).glob(f"*.{file_extension}"))

        self.ucg = ucg

        self.flip_transform = torchvision.transforms.RandomHorizontalFlip(p=0.5)
        self.transforms = torchvision.transforms.Compose(
            [
                torchvision.transforms.Resize(resolution),
                torchvision.transforms.ToTensor(),
            ]
        )
        self.normalize = torchvision.transforms.Normalize([0.5], [0.5])

    def process_canny(self, image):
        # code from https://huggingface.co/docs/diffusers/main/en/api/pipelines/stable_diffusion/controlnet
        image = np.array(image)
        low_threshold, high_threshold = (100, 200)
        image = cv2.Canny(image, low_threshold, high_threshold)
        image = image[:, :, None]
        image = np.concatenate([image, image, image], axis=2)
        canny_image = Image.fromarray(image)

        return canny_image

    def __len__(self):
        return len(self.img_paths)

    def __getitem__(self, idx):
        if self.from_hf_hub:
            image = self.img_paths[idx]["image"]
        else:
            image = Image.open(self.img_paths[idx])

        if self.prompt_key not in image.info:
            print(f"Image {idx} lacks {self.prompt_key}, skipping to next image")
            return self.__getitem__(idx + 1 % len(self))

        if random.random() < self.ucg:
            tags = ""
        else:
            tags = image.info[self.prompt_key]

        # randomly flip image here so input image to canny has matching flip
        image = self.flip_transform(image)

        target = self.normalize(self.transforms(image))

        output_dict = {self.target_key: target, self.cond_key: tags}

        if self.controlnet_hint_key == "canny":
            canny_image = self.transforms(self.process_canny(image))
            output_dict[self.controlnet_hint_key] = canny_image

        return output_dict

    def collate_fn(self, samples):
        prompts = torch.tensor(
            [
                self.tokenizer(
                    sample[self.cond_key],
                    padding="max_length",
                    truncation=True,
                ).input_ids
                for sample in samples
            ]
        )

        images = torch.stack(
            [sample[self.target_key] for sample in samples]
        ).contiguous()

        batch = {
            self.cond_key: prompts,
            self.target_key: images,
        }

        if self.controlnet_hint_key is not None:
            hint = torch.stack(
                [sample[self.controlnet_hint_key] for sample in samples]
            ).contiguous()
            batch[self.controlnet_hint_key] = hint

        return batch


class PNGDataModule:
    def __init__(
        self,
        batch_size=1,
        num_workers=None,
        persistent_workers=True,
        **kwargs,  # passed to dataset class
    ):
        super().__init__()
        vars(self).update(locals())

        if num_workers is None:
            num_workers = cpu_count() // 2

        self.ds_wrapper = partial(PNGDataset, **kwargs)

        self.dl_wrapper = partial(
            DataLoader,
            batch_size=batch_size,
            num_workers=num_workers,
            persistent_workers=persistent_workers,
        )

    def get_dataloader(self, data_dir, shuffle=False):
        dataset = self.ds_wrapper(data_dir=data_dir)
        dataloader = self.dl_wrapper(
            dataset, shuffle=shuffle, collate_fn=dataset.collate_fn
        )
        return dataloader