Spaces:
Runtime error
Runtime error
File size: 8,028 Bytes
6230dda |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 |
# Script for converting a HF Diffusers saved pipeline to a Stable Diffusion checkpoint.
# *Only* converts the UNet, VAE, and Text Encoder.
# Does not convert optimizer state or any other thing.
# Originally written by jachiam at https://gist.github.com/jachiam/8a5c0b607e38fcc585168b90c686eb05
# modified by 1lint to support controlnet conversion
import argparse
import torch
from safetensors import safe_open
from safetensors.torch import save_file
from pathlib import Path
# =================#
# UNet Conversion #
# =================#
unet_conversion_map = [
# (stable-diffusion, HF Diffusers)
("time_embed.0.weight", "time_embedding.linear_1.weight"),
("time_embed.0.bias", "time_embedding.linear_1.bias"),
("time_embed.2.weight", "time_embedding.linear_2.weight"),
("time_embed.2.bias", "time_embedding.linear_2.bias"),
("input_blocks.0.0.weight", "conv_in.weight"),
("input_blocks.0.0.bias", "conv_in.bias"),
("out.0.weight", "conv_norm_out.weight"),
("out.0.bias", "conv_norm_out.bias"),
("out.2.weight", "conv_out.weight"),
("out.2.bias", "conv_out.bias"),
]
unet_conversion_map_resnet = [
# (stable-diffusion, HF Diffusers)
("in_layers.0", "norm1"),
("in_layers.2", "conv1"),
("out_layers.0", "norm2"),
("out_layers.3", "conv2"),
("emb_layers.1", "time_emb_proj"),
("skip_connection", "conv_shortcut"),
]
unet_conversion_map_layer = []
# hardcoded number of downblocks and resnets/attentions...
# would need smarter logic for other networks.
for i in range(4):
# loop over downblocks/upblocks
for j in range(2):
# loop over resnets/attentions for downblocks
hf_down_res_prefix = f"down_blocks.{i}.resnets.{j}."
sd_down_res_prefix = f"input_blocks.{3*i + j + 1}.0."
unet_conversion_map_layer.append((sd_down_res_prefix, hf_down_res_prefix))
if i < 3:
# no attention layers in down_blocks.3
hf_down_atn_prefix = f"down_blocks.{i}.attentions.{j}."
sd_down_atn_prefix = f"input_blocks.{3*i + j + 1}.1."
unet_conversion_map_layer.append((sd_down_atn_prefix, hf_down_atn_prefix))
for j in range(3):
# loop over resnets/attentions for upblocks
hf_up_res_prefix = f"up_blocks.{i}.resnets.{j}."
sd_up_res_prefix = f"output_blocks.{3*i + j}.0."
unet_conversion_map_layer.append((sd_up_res_prefix, hf_up_res_prefix))
if i > 0:
# no attention layers in up_blocks.0
hf_up_atn_prefix = f"up_blocks.{i}.attentions.{j}."
sd_up_atn_prefix = f"output_blocks.{3*i + j}.1."
unet_conversion_map_layer.append((sd_up_atn_prefix, hf_up_atn_prefix))
if i < 3:
# no downsample in down_blocks.3
hf_downsample_prefix = f"down_blocks.{i}.downsamplers.0.conv."
sd_downsample_prefix = f"input_blocks.{3*(i+1)}.0.op."
unet_conversion_map_layer.append((sd_downsample_prefix, hf_downsample_prefix))
# no upsample in up_blocks.3
hf_upsample_prefix = f"up_blocks.{i}.upsamplers.0."
sd_upsample_prefix = f"output_blocks.{3*i + 2}.{1 if i == 0 else 2}."
unet_conversion_map_layer.append((sd_upsample_prefix, hf_upsample_prefix))
hf_mid_atn_prefix = "mid_block.attentions.0."
sd_mid_atn_prefix = "middle_block.1."
unet_conversion_map_layer.append((sd_mid_atn_prefix, hf_mid_atn_prefix))
for j in range(2):
hf_mid_res_prefix = f"mid_block.resnets.{j}."
sd_mid_res_prefix = f"middle_block.{2*j}."
unet_conversion_map_layer.append((sd_mid_res_prefix, hf_mid_res_prefix))
def convert_unet_state_dict(unet_state_dict, is_controlnet=True):
# buyer beware: this is a *brittle* function,
# and correct output requires that all of these pieces interact in
# the exact order in which I have arranged them.
mapping = {k: k for k in unet_state_dict.keys()}
conversion_map = unet_conversion_map
if is_controlnet:
# remove output blocks from conversion mapping since controlnet doesn't have them
conversion_map = unet_conversion_map[:6]
for k, v in mapping.items():
# convert controlnet zero convolution keys
if "controlnet_down_blocks" in v:
new_key = v.replace("controlnet_down_blocks", "zero_convs")
new_key = ".0.".join(new_key.rsplit(".", 1))
mapping[k] = new_key
mapping["controlnet_mid_block.bias"] = "middle_block_out.0.bias"
mapping["controlnet_mid_block.weight"] = "middle_block_out.0.weight"
if "controlnet_cond_embedding.conv_in.weight" in mapping:
mapping[
"controlnet_cond_embedding.conv_in.weight"
] = "input_hint_block.0.weight"
mapping[
"controlnet_cond_embedding.conv_in.bias"
] = "input_hint_block.0.bias"
for i in range(6):
mapping[
f"controlnet_cond_embedding.blocks.{i}.weight"
] = f"input_hint_block.{2*(i+1)}.weight"
mapping[
f"controlnet_cond_embedding.blocks.{i}.bias"
] = f"input_hint_block.{2*(i+1)}.bias"
mapping[
"controlnet_cond_embedding.conv_out.weight"
] = "input_hint_block.14.weight"
mapping[
"controlnet_cond_embedding.conv_out.bias"
] = "input_hint_block.14.bias"
for sd_name, hf_name in conversion_map:
mapping[hf_name] = sd_name
for k, v in mapping.items():
if "resnets" in k:
for sd_part, hf_part in unet_conversion_map_resnet:
v = v.replace(hf_part, sd_part)
mapping[k] = v
for k, v in mapping.items():
for sd_part, hf_part in unet_conversion_map_layer:
v = v.replace(hf_part, sd_part)
mapping[k] = v
new_state_dict = {v: unet_state_dict[k] for k, v in mapping.items()}
return new_state_dict
def load_state_dict(state_dict_path):
file_ext = state_dict_path.rsplit(".", 1)[-1]
if file_ext == "safetensors":
state_dict = {}
with safe_open(state_dict_path, framework="pt", device="cpu") as f:
for key in f.keys():
state_dict[key] = f.get_tensor(key)
else:
state_dict = torch.load(state_dict_path, map_location="cpu")
return state_dict
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--model_path",
default=None,
type=str,
required=True,
help="Path to the model to convert.",
)
parser.add_argument(
"--checkpoint_path",
default=None,
type=str,
required=True,
help="Path to the output model.",
)
parser.add_argument(
"--half", action="store_true", help="Save weights in half precision."
)
parser.add_argument(
"--is_controlnet",
action="store_true",
help="Whether conversion is for controlnet or standard sd unet",
)
parser.add_argument(
"--to_safetensors",
action="store_true",
help="Whether to save state dict in safetensors format",
)
args = parser.parse_args()
assert args.model_path is not None, "Must provide a model path!"
assert args.checkpoint_path is not None, "Must provide a checkpoint path!"
unet_state_dict = load_state_dict(args.model_path)
# Convert the UNet model
unet_state_dict = convert_unet_state_dict(
unet_state_dict, is_controlnet=args.is_controlnet
)
if args.half:
unet_state_dict = {k: v.half() for k, v in unet_state_dict.items()}
Path(args.checkpoint_path).parent.mkdir(parents=True, exist_ok=True)
if args.to_safetensors:
save_file(unet_state_dict, args.checkpoint_path)
else:
torch.save(unet_state_dict, args.checkpoint_path)
print(
f"Converted {Path(args.model_path)} to original SD format at {Path(args.checkpoint_path)}"
)
|