Spaces:
Runtime error
Runtime error
File size: 7,979 Bytes
6230dda 0d0a1c2 6230dda 3e2d60d 6230dda 0d0a1c2 6230dda 3e2d60d 6230dda 0d0a1c2 6230dda 0d0a1c2 6230dda 0d0a1c2 6230dda 0d0a1c2 6230dda 0d0a1c2 6230dda |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 |
import gradio as gr
import torch
import random
from PIL import Image
import os
import argparse
import shutil
import gc
import importlib
import json
from multiprocessing import cpu_count
import cv2
import numpy as np
from pathlib import Path
from diffusers import (
StableDiffusionControlNetPipeline,
StableDiffusionPipeline,
ControlNetModel,
AutoencoderKL,
)
from src.controlnet_pipe import ControlNetPipe as StableDiffusionControlNetPipeline
from src.lab import Lab
from src.ui_shared import (
default_scheduler,
scheduler_dict,
model_ids,
controlnet_ids,
is_hfspace,
)
CONTROLNET_REPO = "lint/anime_control"
_xformers_available = importlib.util.find_spec("xformers") is not None
device = "cuda" if torch.cuda.is_available() else "cpu"
# device = 'cpu'
dtype = torch.float16 if device == "cuda" else torch.float32
pipe = None
loaded_model_id = ""
loaded_controlnet_id = ""
def load_pipe(model_id, controlnet_id, scheduler_name):
global pipe, loaded_model_id, loaded_controlnet_id
scheduler = scheduler_dict[scheduler_name]
reload_pipe = False
if pipe:
new_weights = pipe.components
else:
new_weights = {}
if model_id != loaded_model_id:
new_pipe = StableDiffusionPipeline.from_pretrained(
model_id,
vae=AutoencoderKL.from_pretrained("lint/anime_vae", torch_dtype=dtype),
safety_checker=None,
feature_extractor=None,
requires_safety_checker=False,
use_safetensors=False,
torch_dtype=dtype,
)
loaded_model_id = model_id
new_weights.update(new_pipe.components)
new_weights["scheduler"] = scheduler.from_pretrained(model_id, subfolder="scheduler")
reload_pipe = True
if controlnet_id != loaded_controlnet_id:
controlnet = ControlNetModel.from_pretrained(
CONTROLNET_REPO,
subfolder=controlnet_id,
torch_dtype=dtype,
)
loaded_controlnet_id = controlnet_id
new_weights["controlnet"] = controlnet
reload_pipe = True
if reload_pipe:
pipe = StableDiffusionControlNetPipeline(
**new_weights,
requires_safety_checker=False,
)
if device == "cuda":
for component in pipe.components.values():
if isinstance(component, torch.nn.Module):
component.to("cuda", torch.float16)
if _xformers_available:
pipe.enable_xformers_memory_efficient_attention()
pipe.enable_attention_slicing()
pipe.enable_vae_tiling()
return pipe
# initialize with preloaded pipe
if is_hfspace:
pipe = load_pipe(model_ids[0], controlnet_ids[0], default_scheduler)
def extract_canny(image):
CANNY_THRESHOLD = (100, 200)
image_array = np.asarray(image)
canny_image = cv2.Canny(image_array, *CANNY_THRESHOLD)
canny_image = canny_image[:, :, None]
canny_image = np.concatenate([canny_image]*3, axis=2)
return Image.fromarray(canny_image)
@torch.no_grad()
def generate(
model_name,
guidance_image,
controlnet_name,
scheduler_name,
prompt,
guidance,
steps,
n_images=1,
width=512,
height=512,
seed=0,
neg_prompt="",
controlnet_prompt=None,
controlnet_negative_prompt=None,
controlnet_cond_scale=1.0,
progress=gr.Progress(),
):
if seed == -1:
seed = random.randint(0, 2147483647)
if guidance_image:
guidance_image = extract_canny(guidance_image)
else:
guidance_image = torch.zeros(1, 3, height, width)
generator = torch.Generator(device).manual_seed(seed)
pipe = load_pipe(
model_id=model_name,
controlnet_id=controlnet_name,
scheduler_name=scheduler_name,
)
status_message = f"Prompt: '{prompt}' | Seed: {seed} | Guidance: {guidance} | Scheduler: {scheduler_name} | Steps: {steps}"
# pass None so pipeline uses base prompt as controlnet_prompt
if controlnet_prompt == "":
controlnet_prompt = None #
if controlnet_negative_prompt == "":
controlnet_negative_prompt = None
if controlnet_prompt:
controlnet_prompt_embeds = pipe._encode_prompt(
controlnet_prompt,
device,
n_images,
do_classifier_free_guidance = guidance > 1.0,
negative_prompt = controlnet_negative_prompt,
prompt_embeds=None,
negative_prompt_embeds=None,
)
else:
controlnet_prompt_embeds = None
result = pipe(
prompt,
image=guidance_image,
height=height,
width=width,
num_inference_steps=int(steps),
guidance_scale=guidance,
negative_prompt=neg_prompt,
num_images_per_prompt=n_images,
generator=generator,
controlnet_conditioning_scale = float(controlnet_cond_scale),
controlnet_prompt_embeds = controlnet_prompt_embeds,
)
return result.images, status_message
def run_training(
model_name,
controlnet_weights_path,
train_data_dir,
valid_data_dir,
train_batch_size,
train_whole_controlnet,
gradient_accumulation_steps,
num_train_epochs,
train_learning_rate,
output_dir,
checkpointing_steps,
image_logging_steps,
save_whole_pipeline,
progress=gr.Progress(),
):
global pipe
if device == "cpu":
raise gr.Error("Training not supported on CPU")
pathobj = Path(controlnet_weights_path)
controlnet_path = str(Path().joinpath(*pathobj.parts[:-1]))
subfolder = str(pathobj.parts[-1])
controlnet = ControlNetModel.from_pretrained(
controlnet_path,
subfolder=subfolder,
low_cpu_mem_usage=False,
device_map=None,
)
pipe.components["controlnet"] = controlnet
pipe = StableDiffusionControlNetPipeline(
**pipe.components,
requires_safety_checker=False,
)
training_args = argparse.Namespace(
# start training from preexisting models
pretrained_model_name_or_path=None,
controlnet_weights_path=None,
# dataset args
train_data_dir=train_data_dir,
valid_data_dir=valid_data_dir,
resolution=512,
from_hf_hub = train_data_dir == "lint/anybooru",
controlnet_hint_key="canny",
# training args
# options are ["zero convolutions", "input hint blocks"], trains whole controlnet by default
training_stage="" if train_whole_controlnet else "zero convolutions",
learning_rate=float(train_learning_rate),
num_train_epochs=int(num_train_epochs),
seed=3434554,
max_grad_norm=1.0,
gradient_accumulation_steps=int(gradient_accumulation_steps),
# VRAM args
batch_size=train_batch_size,
mixed_precision="fp16", # set to "fp16" for mixed-precision training.
gradient_checkpointing=True, # set this to True to lower the memory usage.
use_8bit_adam=False, # use 8bit optimizer from bitsandbytes
enable_xformers_memory_efficient_attention=True,
allow_tf32=True,
dataloader_num_workers=cpu_count(),
# logging args
output_dir=output_dir,
report_to="tensorboard",
image_logging_steps=image_logging_steps, # disabled when 0. costs additional VRAM to log images
save_whole_pipeline=save_whole_pipeline,
checkpointing_steps=checkpointing_steps,
)
try:
lab = Lab(training_args, pipe)
lab.train(training_args.num_train_epochs, gr_progress=progress)
except Exception as e:
raise gr.Error(e)
for component in pipe.components.values():
if isinstance(component, torch.nn.Module):
component.to(device, dtype=dtype)
gc.collect()
torch.cuda.empty_cache()
return f"Finished training! Check the {training_args.output_dir} directory for saved model weights"
|