# Script for converting a HF Diffusers saved pipeline to a Stable Diffusion checkpoint. # *Only* converts the UNet, VAE, and Text Encoder. # Does not convert optimizer state or any other thing. # Originally written by jachiam at https://gist.github.com/jachiam/8a5c0b607e38fcc585168b90c686eb05 # modified by 1lint to support controlnet conversion import argparse import torch from safetensors import safe_open from safetensors.torch import save_file from pathlib import Path # =================# # UNet Conversion # # =================# unet_conversion_map = [ # (stable-diffusion, HF Diffusers) ("time_embed.0.weight", "time_embedding.linear_1.weight"), ("time_embed.0.bias", "time_embedding.linear_1.bias"), ("time_embed.2.weight", "time_embedding.linear_2.weight"), ("time_embed.2.bias", "time_embedding.linear_2.bias"), ("input_blocks.0.0.weight", "conv_in.weight"), ("input_blocks.0.0.bias", "conv_in.bias"), ("out.0.weight", "conv_norm_out.weight"), ("out.0.bias", "conv_norm_out.bias"), ("out.2.weight", "conv_out.weight"), ("out.2.bias", "conv_out.bias"), ] unet_conversion_map_resnet = [ # (stable-diffusion, HF Diffusers) ("in_layers.0", "norm1"), ("in_layers.2", "conv1"), ("out_layers.0", "norm2"), ("out_layers.3", "conv2"), ("emb_layers.1", "time_emb_proj"), ("skip_connection", "conv_shortcut"), ] unet_conversion_map_layer = [] # hardcoded number of downblocks and resnets/attentions... # would need smarter logic for other networks. for i in range(4): # loop over downblocks/upblocks for j in range(2): # loop over resnets/attentions for downblocks hf_down_res_prefix = f"down_blocks.{i}.resnets.{j}." sd_down_res_prefix = f"input_blocks.{3*i + j + 1}.0." unet_conversion_map_layer.append((sd_down_res_prefix, hf_down_res_prefix)) if i < 3: # no attention layers in down_blocks.3 hf_down_atn_prefix = f"down_blocks.{i}.attentions.{j}." sd_down_atn_prefix = f"input_blocks.{3*i + j + 1}.1." unet_conversion_map_layer.append((sd_down_atn_prefix, hf_down_atn_prefix)) for j in range(3): # loop over resnets/attentions for upblocks hf_up_res_prefix = f"up_blocks.{i}.resnets.{j}." sd_up_res_prefix = f"output_blocks.{3*i + j}.0." unet_conversion_map_layer.append((sd_up_res_prefix, hf_up_res_prefix)) if i > 0: # no attention layers in up_blocks.0 hf_up_atn_prefix = f"up_blocks.{i}.attentions.{j}." sd_up_atn_prefix = f"output_blocks.{3*i + j}.1." unet_conversion_map_layer.append((sd_up_atn_prefix, hf_up_atn_prefix)) if i < 3: # no downsample in down_blocks.3 hf_downsample_prefix = f"down_blocks.{i}.downsamplers.0.conv." sd_downsample_prefix = f"input_blocks.{3*(i+1)}.0.op." unet_conversion_map_layer.append((sd_downsample_prefix, hf_downsample_prefix)) # no upsample in up_blocks.3 hf_upsample_prefix = f"up_blocks.{i}.upsamplers.0." sd_upsample_prefix = f"output_blocks.{3*i + 2}.{1 if i == 0 else 2}." unet_conversion_map_layer.append((sd_upsample_prefix, hf_upsample_prefix)) hf_mid_atn_prefix = "mid_block.attentions.0." sd_mid_atn_prefix = "middle_block.1." unet_conversion_map_layer.append((sd_mid_atn_prefix, hf_mid_atn_prefix)) for j in range(2): hf_mid_res_prefix = f"mid_block.resnets.{j}." sd_mid_res_prefix = f"middle_block.{2*j}." unet_conversion_map_layer.append((sd_mid_res_prefix, hf_mid_res_prefix)) def convert_unet_state_dict(unet_state_dict, is_controlnet=True): # buyer beware: this is a *brittle* function, # and correct output requires that all of these pieces interact in # the exact order in which I have arranged them. mapping = {k: k for k in unet_state_dict.keys()} conversion_map = unet_conversion_map if is_controlnet: # remove output blocks from conversion mapping since controlnet doesn't have them conversion_map = unet_conversion_map[:6] for k, v in mapping.items(): # convert controlnet zero convolution keys if "controlnet_down_blocks" in v: new_key = v.replace("controlnet_down_blocks", "zero_convs") new_key = ".0.".join(new_key.rsplit(".", 1)) mapping[k] = new_key mapping["controlnet_mid_block.bias"] = "middle_block_out.0.bias" mapping["controlnet_mid_block.weight"] = "middle_block_out.0.weight" if "controlnet_cond_embedding.conv_in.weight" in mapping: mapping[ "controlnet_cond_embedding.conv_in.weight" ] = "input_hint_block.0.weight" mapping[ "controlnet_cond_embedding.conv_in.bias" ] = "input_hint_block.0.bias" for i in range(6): mapping[ f"controlnet_cond_embedding.blocks.{i}.weight" ] = f"input_hint_block.{2*(i+1)}.weight" mapping[ f"controlnet_cond_embedding.blocks.{i}.bias" ] = f"input_hint_block.{2*(i+1)}.bias" mapping[ "controlnet_cond_embedding.conv_out.weight" ] = "input_hint_block.14.weight" mapping[ "controlnet_cond_embedding.conv_out.bias" ] = "input_hint_block.14.bias" for sd_name, hf_name in conversion_map: mapping[hf_name] = sd_name for k, v in mapping.items(): if "resnets" in k: for sd_part, hf_part in unet_conversion_map_resnet: v = v.replace(hf_part, sd_part) mapping[k] = v for k, v in mapping.items(): for sd_part, hf_part in unet_conversion_map_layer: v = v.replace(hf_part, sd_part) mapping[k] = v new_state_dict = {v: unet_state_dict[k] for k, v in mapping.items()} return new_state_dict def load_state_dict(state_dict_path): file_ext = state_dict_path.rsplit(".", 1)[-1] if file_ext == "safetensors": state_dict = {} with safe_open(state_dict_path, framework="pt", device="cpu") as f: for key in f.keys(): state_dict[key] = f.get_tensor(key) else: state_dict = torch.load(state_dict_path, map_location="cpu") return state_dict if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--model_path", default=None, type=str, required=True, help="Path to the model to convert.", ) parser.add_argument( "--checkpoint_path", default=None, type=str, required=True, help="Path to the output model.", ) parser.add_argument( "--half", action="store_true", help="Save weights in half precision." ) parser.add_argument( "--is_controlnet", action="store_true", help="Whether conversion is for controlnet or standard sd unet", ) parser.add_argument( "--to_safetensors", action="store_true", help="Whether to save state dict in safetensors format", ) args = parser.parse_args() assert args.model_path is not None, "Must provide a model path!" assert args.checkpoint_path is not None, "Must provide a checkpoint path!" unet_state_dict = load_state_dict(args.model_path) # Convert the UNet model unet_state_dict = convert_unet_state_dict( unet_state_dict, is_controlnet=args.is_controlnet ) if args.half: unet_state_dict = {k: v.half() for k, v in unet_state_dict.items()} Path(args.checkpoint_path).parent.mkdir(parents=True, exist_ok=True) if args.to_safetensors: save_file(unet_state_dict, args.checkpoint_path) else: torch.save(unet_state_dict, args.checkpoint_path) print( f"Converted {Path(args.model_path)} to original SD format at {Path(args.checkpoint_path)}" )