File size: 3,856 Bytes
ee34e74
 
cdac71f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
sql_query='''SELECT * FROM input_table 
WHERE text LIKE '%curls%';''';
import duckdb
import pandas as pd
import gradio as gr
from datasets import load_dataset
import tempfile
import re


max_rows = 20
df_display_kwargs = dict(
    wrap = True,
    max_rows = max_rows,
    type = "pandas",
    row_count = 3,
    col_count = 4,
)

dataset_choices = [
    "rotten_tomatoes",
    "sciq",
]

def apply_sql(input_table, sql_query):

    # Use regex to extract the table name from the SQL query
    match = re.search(r"\bFROM\s+(\w+)", sql_query, re.IGNORECASE)
    if match:
        table_name = match.group(1)

    sql_query = sql_query.replace(table_name, "input_table")

    output_df = duckdb.query(sql_query).to_df()

    return output_df

def display_dataset(dataset_id):

    dataset = load_dataset(dataset_id, split="train")
    df = dataset.to_pandas()
    return df, df

def upload_dataset(dataset_file):

    if dataset_file is None:
        return None, None

    print(dataset_file.name)

    df = pd.read_csv(dataset_file.name)

    return df, df


def process_dataset(full_dataset, sql_query):
    input_table = full_dataset
    output_df = duckdb.query(sql_query).to_df()

    with tempfile.NamedTemporaryFile(delete=False) as temp_file:
        file_path = temp_file.name
        output_df.to_csv(file_path)

    return output_df, file_path


theme = gr.themes.Soft(
    primary_hue="blue",
    neutral_hue="slate",
)


with gr.Blocks(analytics_enabled=False, theme=theme) as demo:
    full_dataset = gr.State()

    with gr.Column():
        with gr.Row().style(equal_height=True):
            
            with gr.Column(variant="panel"):

                with gr.Row():
                    dark_mode_btn = gr.Button("Dark Mode", variant="primary")
                    load_dataset_button = gr.Button("Load HF Dataset", variant="secondary")

                dataset_selector = gr.Dropdown(label="HF Dataset", choices=dataset_choices, value=dataset_choices[0])
                

            with gr.Column(variant="compact"):

                with gr.Row():
                    sql_query_btn = gr.Button("Apply SQL Query", variant="secondary")
                    download_dataset_btn = gr.Button("Download Queried Dataset", variant="primary")

                sql_query_comp = gr.Code(language=None, label="SQL Query", lines=3, value=sql_query)

        with gr.Row().style(equal_height=True):
            upload_dataset_comp = gr.File(label="Upload Dataset")
            download_dataset_comp = gr.File(label="Download Dataset")
                           
        with gr.Column(variant="panel"):
            input_df_display = gr.Dataframe(**df_display_kwargs, label=f"Input Dataframe (Truncated to first {max_rows} Rows)")

            output_df_display = gr.Dataframe(**df_display_kwargs, label=f"Output Dataframe (Truncated to first {max_rows} Rows)")

    load_dataset_button.click(fn=display_dataset, inputs=[dataset_selector], outputs=[input_df_display, full_dataset])
    upload_dataset_comp.change(fn=upload_dataset, inputs=[upload_dataset_comp], outputs=[input_df_display, full_dataset])

    sql_query_btn.click(fn=apply_sql, inputs=[input_df_display, sql_query_comp], outputs=[output_df_display])
    
    download_dataset_btn.click(fn=process_dataset, inputs=[full_dataset, sql_query_comp], outputs=[output_df_display, download_dataset_comp])

    toggle_dark_mode_args = dict(
        fn=None,
        inputs=None,
        outputs=None,
        _js="""() => {
        if (document.querySelectorAll('.dark').length) {
                document.querySelectorAll('.dark').forEach(el => el.classList.remove('dark'));
            } else {
                document.querySelector('body').classList.add('dark');
            }
        }""",
    )
    demo.load(**toggle_dark_mode_args)
    dark_mode_btn.click(**toggle_dark_mode_args)