Spaces:
Runtime error
Runtime error
File size: 14,453 Bytes
a9103c4 7833185 a9103c4 7833185 a9103c4 f94c315 a9103c4 7833185 a9103c4 7833185 a9103c4 f94c315 a9103c4 f94c315 a9103c4 f94c315 a9103c4 7833185 a9103c4 7833185 a9103c4 f94c315 a9103c4 7833185 a9103c4 f94c315 a9103c4 7833185 a9103c4 7833185 a9103c4 7833185 a9103c4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 |
# inpaint pipeline with fix to avoid noise added to latents during final iteration of denoising loop
from inpaint_pipeline import SDInpaintPipeline as StableDiffusionInpaintPipelineLegacy
from diffusers import (
StableDiffusionPipeline,
StableDiffusionImg2ImgPipeline,
)
import diffusers.schedulers
import gradio as gr
import torch
import random
from multiprocessing import cpu_count
import json
from PIL import Image
import os
import argparse
import shutil
import gc
import importlib
from textual_inversion import main as run_textual_inversion
def pad_image(image):
w, h = image.size
if w == h:
return image
elif w > h:
new_image = Image.new(image.mode, (w, w), (0, 0, 0))
new_image.paste(image, (0, (w - h) // 2))
return new_image
else:
new_image = Image.new(image.mode, (h, h), (0, 0, 0))
new_image.paste(image, ((h - w) // 2, 0))
return new_image
_xformers_available = importlib.util.find_spec("xformers") is not None
device = "cuda" if torch.cuda.is_available() else "cpu"
low_vram_mode = False
# scheduler dict includes superclass SchedulerMixin (it still generates reasonable images)
scheduler_dict = {
k: v
for k, v in diffusers.schedulers.__dict__.items()
if "Scheduler" in k and "Flax" not in k
}
scheduler_dict.pop(
"VQDiffusionScheduler"
) # requires unique parameter, unlike other schedulers
scheduler_names = list(scheduler_dict.keys())
default_scheduler = scheduler_names[3] # expected to be DPM Multistep
model_ids = [
"andite/anything-v4.0",
"hakurei/waifu-diffusion",
"prompthero/openjourney-v2",
"runwayml/stable-diffusion-v1-5",
"johnslegers/epic-diffusion",
"stabilityai/stable-diffusion-2-1",
]
loaded_model_id = ""
def load_pipe(
model_id, scheduler_name, pipe_class=StableDiffusionPipeline, pipe_kwargs="{}"
):
global pipe, loaded_model_id
scheduler = scheduler_dict[scheduler_name]
# load new weights from disk only when changing model_id
if model_id != loaded_model_id:
pipe = pipe_class.from_pretrained(
model_id,
torch_dtype=torch.float16,
safety_checker=None,
requires_safety_checker=False,
scheduler=scheduler.from_pretrained(model_id, subfolder="scheduler"),
**json.loads(pipe_kwargs),
)
loaded_model_id = model_id
# if same model_id, instantiate new pipeline with same underlying pytorch objects to avoid reloading weights from disk
elif pipe_class != pipe.__class__ or not isinstance(pipe.scheduler, scheduler):
pipe.components["scheduler"] = scheduler.from_pretrained(
model_id, subfolder="scheduler"
)
pipe = pipe_class(**pipe.components)
if device == 'cuda':
pipe = pipe.to(device)
if _xformers_available:
pipe.enable_xformers_memory_efficient_attention()
print("using xformers")
if low_vram_mode:
pipe.enable_attention_slicing()
print("using attention slicing to lower VRAM")
return pipe
pipe = None
pipe = load_pipe(model_ids[0], default_scheduler)
@torch.autocast(device)
@torch.no_grad()
def generate(
model_name,
scheduler_name,
prompt,
guidance,
steps,
n_images=1,
width=512,
height=512,
seed=0,
image=None,
strength=0.5,
inpaint_image=None,
inpaint_strength=0.5,
inpaint_radio='',
neg_prompt="",
pipe_class=StableDiffusionPipeline,
pipe_kwargs="{}",
):
if seed == -1:
seed = random.randint(0, 2147483647)
generator = torch.Generator("cuda").manual_seed(seed)
pipe = load_pipe(
model_id=model_name,
scheduler_name=scheduler_name,
pipe_class=pipe_class,
pipe_kwargs=pipe_kwargs,
)
status_message = (
f"Prompt: '{prompt}' | Seed: {seed} | Guidance: {guidance} | Scheduler: {scheduler_name} | Steps: {steps}"
)
if pipe_class == StableDiffusionPipeline:
status_message = "Text to Image " + status_message
result = pipe(
prompt,
negative_prompt=neg_prompt,
num_images_per_prompt=n_images,
num_inference_steps=int(steps),
guidance_scale=guidance,
width=width,
height=height,
generator=generator,
)
elif pipe_class == StableDiffusionImg2ImgPipeline:
status_message = "Image to Image " + status_message
print(image.size)
image = image.resize((width, height))
print(image.size)
result = pipe(
prompt,
negative_prompt=neg_prompt,
num_images_per_prompt=n_images,
image=image,
num_inference_steps=int(steps),
strength=strength,
guidance_scale=guidance,
generator=generator,
)
elif pipe_class == StableDiffusionInpaintPipelineLegacy:
status_message = "Inpainting " + status_message
init_image = inpaint_image["image"].resize((width, height))
mask = inpaint_image["mask"].resize((width, height))
result = pipe(
prompt,
negative_prompt=neg_prompt,
num_images_per_prompt=n_images,
image=init_image,
mask_image=mask,
num_inference_steps=int(steps),
strength=inpaint_strength,
preserve_unmasked_image=(inpaint_radio == inpaint_options[0]),
guidance_scale=guidance,
generator=generator,
)
else:
return None, f"Unhandled pipeline class: {pipe_class}", -1
return result.images, status_message, seed
# based on lvkaokao/textual-inversion-training
def train_textual_inversion(model_name, scheduler_name, type_of_thing, files, concept_word, init_word, text_train_steps, text_train_bsz, text_learning_rate, progress=gr.Progress(track_tqdm=True)):
pipe = load_pipe(
model_id=model_name,
scheduler_name=scheduler_name,
pipe_class=StableDiffusionPipeline,
)
pipe.disable_xformers_memory_efficient_attention() # xformers handled by textual inversion script
concept_dir = 'concept_images'
output_dir = 'output_model'
training_resolution = 512
if os.path.exists(output_dir): shutil.rmtree('output_model')
if os.path.exists(concept_dir): shutil.rmtree('concept_images')
os.makedirs(concept_dir, exist_ok=True)
os.makedirs(output_dir, exist_ok=True)
gc.collect()
torch.cuda.empty_cache()
if(prompt == "" or prompt == None):
raise gr.Error("You forgot to define your concept prompt")
for j, file_temp in enumerate(files):
file = Image.open(file_temp.name)
image = pad_image(file)
image = image.resize((training_resolution, training_resolution))
extension = file_temp.name.split(".")[1]
image = image.convert('RGB')
image.save(f'{concept_dir}/{j+1}.{extension}', quality=100)
args_general = argparse.Namespace(
train_data_dir=concept_dir,
learnable_property=type_of_thing,
placeholder_token=concept_word,
initializer_token=init_word,
resolution=training_resolution,
train_batch_size=text_train_bsz,
gradient_accumulation_steps=1,
gradient_checkpointing=True,
mixed_precision='fp16',
use_bf16=False,
max_train_steps=int(text_train_steps),
learning_rate=text_learning_rate,
scale_lr=True,
lr_scheduler="constant",
lr_warmup_steps=0,
output_dir=output_dir,
)
try:
final_result = run_textual_inversion(pipe, args_general)
except Exception as e:
raise gr.Error(e)
gc.collect()
torch.cuda.empty_cache()
return f'Finished training! Check the {output_dir} directory for saved model weights'
default_img_size = 512
with open("header.html") as fp:
header = fp.read()
with open("footer.html") as fp:
footer = fp.read()
with gr.Blocks(css="style.css") as demo:
pipe_state = gr.State(lambda: StableDiffusionPipeline)
gr.HTML(header)
with gr.Row():
with gr.Column(scale=70):
# with gr.Row():
prompt = gr.Textbox(
label="Prompt", placeholder="<Shift+Enter> to generate", lines=2
)
neg_prompt = gr.Textbox(label="Negative Prompt", placeholder="", lines=2)
with gr.Column(scale=30):
model_name = gr.Dropdown(
label="Model", choices=model_ids, value=loaded_model_id
)
scheduler_name = gr.Dropdown(
label="Scheduler", choices=scheduler_names, value=default_scheduler
)
generate_button = gr.Button(value="Generate", elem_id="generate-button")
with gr.Row():
with gr.Column():
with gr.Tab("Text to Image") as tab:
tab.select(lambda: StableDiffusionPipeline, [], pipe_state)
with gr.Tab("Image to image") as tab:
tab.select(lambda: StableDiffusionImg2ImgPipeline, [], pipe_state)
image = gr.Image(
label="Image to Image",
source="upload",
tool="editor",
type="pil",
elem_id="image_upload",
).style(height=default_img_size)
strength = gr.Slider(
label="Denoising strength",
minimum=0,
maximum=1,
step=0.02,
value=0.8,
)
with gr.Tab("Inpainting") as tab:
tab.select(lambda: StableDiffusionInpaintPipelineLegacy, [], pipe_state)
inpaint_image = gr.Image(
label="Inpainting",
source="upload",
tool="sketch",
type="pil",
elem_id="image_upload",
).style(height=default_img_size)
inpaint_strength = gr.Slider(
label="Denoising strength",
minimum=0,
maximum=1,
step=0.02,
value=0.8,
)
inpaint_options = ["preserve non-masked portions of image", "output entire inpainted image"]
inpaint_radio = gr.Radio(inpaint_options, value=inpaint_options[0], show_label=False, interactive=True)
with gr.Tab("Textual Inversion") as tab:
tab.select(lambda: StableDiffusionPipeline, [], pipe_state)
type_of_thing = gr.Dropdown(label="What would you like to train?", choices=["object", "person", "style"], value="object", interactive=True)
text_train_bsz = gr.Slider(
label="Training Batch Size",
minimum=1,
maximum=8,
step=1,
value=1,
)
files = gr.File(label=f'''Upload the images for your concept''', file_count="multiple", interactive=True, visible=True)
text_train_steps = gr.Number(label="How many steps", value=1000)
text_learning_rate = gr.Number(label="Learning Rate", value=5.e-4)
concept_word = gr.Textbox(label=f'''concept word - use a unique, made up word to avoid collisions''')
init_word = gr.Textbox(label=f'''initial word - to init the concept embedding''')
textual_inversion_button = gr.Button(value="Train Textual Inversion")
training_status = gr.Text(label="Training Status")
with gr.Row():
batch_size = gr.Slider(
label="Batch Size", value=1, minimum=1, maximum=8, step=1
)
seed = gr.Slider(-1, 2147483647, label="Seed", value=-1, step=1)
with gr.Row():
guidance = gr.Slider(
label="Guidance scale", value=7.5, minimum=0, maximum=20
)
steps = gr.Slider(
label="Steps", value=20, minimum=1, maximum=100, step=1
)
with gr.Row():
width = gr.Slider(
label="Width",
value=default_img_size,
minimum=64,
maximum=1024,
step=32,
)
height = gr.Slider(
label="Height",
value=default_img_size,
minimum=64,
maximum=1024,
step=32,
)
with gr.Column():
gallery = gr.Gallery(
label="Generated images", show_label=False, elem_id="gallery"
).style(height=default_img_size, grid=2)
generation_details = gr.Markdown()
pipe_kwargs = gr.Textbox(label="Pipe kwargs", value="{\n\t\n}")
# if torch.cuda.is_available():
# giga = 2**30
# vram_guage = gr.Slider(0, torch.cuda.memory_reserved(0)/giga, label='VRAM Allocated to Reserved (GB)', value=0, step=1)
# demo.load(lambda : torch.cuda.memory_allocated(0)/giga, inputs=[], outputs=vram_guage, every=0.5, show_progress=False)
gr.HTML(footer)
inputs = [
model_name,
scheduler_name,
prompt,
guidance,
steps,
batch_size,
width,
height,
seed,
image,
strength,
inpaint_image,
inpaint_strength,
inpaint_radio,
neg_prompt,
pipe_state,
pipe_kwargs,
]
outputs = [gallery, generation_details, seed]
prompt.submit(generate, inputs=inputs, outputs=outputs)
generate_button.click(generate, inputs=inputs, outputs=outputs)
textual_inversion_inputs = [model_name, scheduler_name, type_of_thing, files, concept_word, init_word, text_train_steps, text_train_bsz, text_learning_rate]
textual_inversion_button.click(train_textual_inversion, inputs=textual_inversion_inputs, outputs=[training_status])
#demo = gr.TabbedInterface([demo, dreambooth_tab], ["Main", "Dreambooth"])
demo.queue(concurrency_count=cpu_count())
demo.launch()
|