Spaces:
Runtime error
Runtime error
File size: 7,584 Bytes
919fef8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 |
import gradio as gr
import torch
import random
from PIL import Image
import os
import argparse
import shutil
import gc
import importlib
import json
from diffusers import (
StableDiffusionPipeline,
StableDiffusionImg2ImgPipeline,
)
from .inpaint_pipeline import SDInpaintPipeline as StableDiffusionInpaintPipelineLegacy
from .textual_inversion import main as run_textual_inversion
from .shared import default_scheduler, scheduler_dict, model_ids
_xformers_available = importlib.util.find_spec("xformers") is not None
device = "cuda" if torch.cuda.is_available() else "cpu"
# device = 'cpu'
dtype = torch.float16 if device == "cuda" else torch.float32
low_vram_mode = False
tab_to_pipeline = {
1: StableDiffusionPipeline,
2: StableDiffusionImg2ImgPipeline,
3: StableDiffusionInpaintPipelineLegacy,
}
def load_pipe(model_id, scheduler_name, tab_index=1, pipe_kwargs="{}"):
global pipe, loaded_model_id
scheduler = scheduler_dict[scheduler_name]
pipe_class = tab_to_pipeline[tab_index]
# load new weights from disk only when changing model_id
if model_id != loaded_model_id:
pipe = pipe_class.from_pretrained(
model_id,
torch_dtype=dtype,
safety_checker=None,
requires_safety_checker=False,
scheduler=scheduler.from_pretrained(model_id, subfolder="scheduler"),
**json.loads(pipe_kwargs),
)
loaded_model_id = model_id
# if same model_id, instantiate new pipeline with same underlying pytorch objects to avoid reloading weights from disk
elif pipe_class != pipe.__class__ or not isinstance(pipe.scheduler, scheduler):
pipe.components["scheduler"] = scheduler.from_pretrained(
model_id, subfolder="scheduler"
)
pipe = pipe_class(**pipe.components)
if device == "cuda":
pipe = pipe.to(device)
if _xformers_available:
pipe.enable_xformers_memory_efficient_attention()
print("using xformers")
if low_vram_mode:
pipe.enable_attention_slicing()
print("using attention slicing to lower VRAM")
return pipe
pipe = None
loaded_model_id = ""
pipe = load_pipe(model_ids[0], default_scheduler)
def pad_image(image):
w, h = image.size
if w == h:
return image
elif w > h:
new_image = Image.new(image.mode, (w, w), (0, 0, 0))
new_image.paste(image, (0, (w - h) // 2))
return new_image
else:
new_image = Image.new(image.mode, (h, h), (0, 0, 0))
new_image.paste(image, ((h - w) // 2, 0))
return new_image
@torch.no_grad()
def generate(
model_name,
scheduler_name,
prompt,
guidance,
steps,
n_images=1,
width=512,
height=512,
seed=0,
image=None,
strength=0.5,
inpaint_image=None,
inpaint_strength=0.5,
inpaint_radio="",
neg_prompt="",
tab_index=1,
pipe_kwargs="{}",
progress=gr.Progress(track_tqdm=True),
):
if seed == -1:
seed = random.randint(0, 2147483647)
generator = torch.Generator(device).manual_seed(seed)
pipe = load_pipe(
model_id=model_name,
scheduler_name=scheduler_name,
tab_index=tab_index,
pipe_kwargs=pipe_kwargs,
)
status_message = f"Prompt: '{prompt}' | Seed: {seed} | Guidance: {guidance} | Scheduler: {scheduler_name} | Steps: {steps}"
if tab_index == 1:
status_message = "Text to Image " + status_message
result = pipe(
prompt,
negative_prompt=neg_prompt,
num_images_per_prompt=n_images,
num_inference_steps=int(steps),
guidance_scale=guidance,
width=width,
height=height,
generator=generator,
)
elif tab_index == 2:
status_message = "Image to Image " + status_message
print(image.size)
image = image.resize((width, height))
print(image.size)
result = pipe(
prompt,
negative_prompt=neg_prompt,
num_images_per_prompt=n_images,
image=image,
num_inference_steps=int(steps),
strength=strength,
guidance_scale=guidance,
generator=generator,
)
elif tab_index == 3:
status_message = "Inpainting " + status_message
init_image = inpaint_image["image"].resize((width, height))
mask = inpaint_image["mask"].resize((width, height))
result = pipe(
prompt,
negative_prompt=neg_prompt,
num_images_per_prompt=n_images,
image=init_image,
mask_image=mask,
num_inference_steps=int(steps),
strength=inpaint_strength,
preserve_unmasked_image=(
inpaint_radio == "preserve non-masked portions of image"
),
guidance_scale=guidance,
generator=generator,
)
else:
return None, f"Unhandled tab index: {tab_index}"
return result.images, status_message
# based on lvkaokao/textual-inversion-training
def train_textual_inversion(
model_name,
scheduler_name,
type_of_thing,
files,
concept_word,
init_word,
text_train_steps,
text_train_bsz,
text_learning_rate,
progress=gr.Progress(track_tqdm=True),
):
if device == "cpu":
raise gr.Error("Textual inversion training not supported on CPU")
pipe = load_pipe(
model_id=model_name,
scheduler_name=scheduler_name,
tab_index=1,
)
pipe.disable_xformers_memory_efficient_attention() # xformers handled by textual inversion script
concept_dir = "concept_images"
output_dir = "output_model"
training_resolution = 512
if os.path.exists(output_dir):
shutil.rmtree("output_model")
if os.path.exists(concept_dir):
shutil.rmtree("concept_images")
os.makedirs(concept_dir, exist_ok=True)
os.makedirs(output_dir, exist_ok=True)
gc.collect()
torch.cuda.empty_cache()
if concept_word == "" or concept_word == None:
raise gr.Error("You forgot to define your concept prompt")
for j, file_temp in enumerate(files):
file = Image.open(file_temp.name)
image = pad_image(file)
image = image.resize((training_resolution, training_resolution))
extension = file_temp.name.split(".")[1]
image = image.convert("RGB")
image.save(f"{concept_dir}/{j+1}.{extension}", quality=100)
args_general = argparse.Namespace(
train_data_dir=concept_dir,
learnable_property=type_of_thing,
placeholder_token=concept_word,
initializer_token=init_word,
resolution=training_resolution,
train_batch_size=text_train_bsz,
gradient_accumulation_steps=1,
gradient_checkpointing=True,
mixed_precision="fp16",
use_bf16=False,
max_train_steps=int(text_train_steps),
learning_rate=text_learning_rate,
scale_lr=True,
lr_scheduler="constant",
lr_warmup_steps=0,
output_dir=output_dir,
)
try:
final_result = run_textual_inversion(pipe, args_general)
except Exception as e:
raise gr.Error(e)
pipe.text_encoder = pipe.text_encoder.eval().to(device, dtype=dtype)
pipe.unet = pipe.unet.eval().to(device, dtype=dtype)
gc.collect()
torch.cuda.empty_cache()
return (
f"Finished training! Check the {output_dir} directory for saved model weights"
)
|