File size: 15,817 Bytes
9e636c4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 |
# Copyright 2024 the Llamole team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import yaml
import json
import torch
import torch.nn as nn
import torch.nn.functional as F
from . import diffusion_utils as utils
from .molecule_utils import graph_to_smiles, check_valid
from .transformer import Transformer
from .visualize_utils import MolecularVisualization
class GraphDiT(nn.Module):
def __init__(
self,
model_config_path,
data_info_path,
model_dtype,
):
super().__init__()
dm_cfg, data_info = utils.load_config(model_config_path, data_info_path)
input_dims = data_info.input_dims
output_dims = data_info.output_dims
nodes_dist = data_info.nodes_dist
active_index = data_info.active_index
self.model_config = dm_cfg
self.data_info = data_info
self.T = dm_cfg.diffusion_steps
self.Xdim = input_dims["X"]
self.Edim = input_dims["E"]
self.ydim = input_dims["y"]
self.Xdim_output = output_dims["X"]
self.Edim_output = output_dims["E"]
self.ydim_output = output_dims["y"]
self.node_dist = nodes_dist
self.active_index = active_index
self.max_n_nodes = data_info.max_n_nodes
self.atom_decoder = data_info.atom_decoder
self.hidden_size = dm_cfg.hidden_size
self.mol_visualizer = MolecularVisualization(self.atom_decoder)
self.denoiser = Transformer(
max_n_nodes=self.max_n_nodes,
hidden_size=dm_cfg.hidden_size,
depth=dm_cfg.depth,
num_heads=dm_cfg.num_heads,
mlp_ratio=dm_cfg.mlp_ratio,
drop_condition=dm_cfg.drop_condition,
Xdim=self.Xdim,
Edim=self.Edim,
ydim=self.ydim,
)
self.model_dtype = model_dtype
# self.device = next(self.denoiser.parameters()).device
# model_params = torch.load(model_params_path, map_location='cpu')
# self.denoiser.load_state_dict(model_params)
self.noise_schedule = utils.PredefinedNoiseScheduleDiscrete(
dm_cfg.diffusion_noise_schedule, timesteps=dm_cfg.diffusion_steps
)
x_marginals = data_info.node_types.to(self.model_dtype) / torch.sum(
data_info.node_types.to(self.model_dtype)
)
e_marginals = data_info.edge_types.to(self.model_dtype) / torch.sum(
data_info.edge_types.to(self.model_dtype)
)
x_marginals = x_marginals / x_marginals.sum()
e_marginals = e_marginals / e_marginals.sum()
xe_conditions = data_info.transition_E.to(self.model_dtype)
xe_conditions = xe_conditions[self.active_index][:, self.active_index]
xe_conditions = xe_conditions.sum(dim=1)
ex_conditions = xe_conditions.t()
xe_conditions = xe_conditions / xe_conditions.sum(dim=-1, keepdim=True)
ex_conditions = ex_conditions / ex_conditions.sum(dim=-1, keepdim=True)
self.transition_model = utils.MarginalTransition(
x_marginals=x_marginals,
e_marginals=e_marginals,
xe_conditions=xe_conditions,
ex_conditions=ex_conditions,
y_classes=self.ydim_output,
n_nodes=self.max_n_nodes,
)
self.limit_dist = utils.PlaceHolder(X=x_marginals, E=e_marginals, y=None)
# def to(self, *args, **kwargs):
# self = super().to(*args, **kwargs)
# self.model_dtype = next(self.denoiser.parameters()).dtype
# return self
def init_model(self, model_dir, verbose=False):
model_file = os.path.join(model_dir, 'model.pt')
if os.path.exists(model_file):
self.denoiser.load_state_dict(torch.load(model_file, map_location='cpu', weights_only=True))
else:
raise FileNotFoundError(f"Model file not found: {model_file}")
if verbose:
print('GraphDiT Denoiser Model initialized.')
print('Denoiser model:\n', self.denoiser)
def save_pretrained(self, output_dir):
if not os.path.exists(output_dir):
os.makedirs(output_dir)
# Save model
model_path = os.path.join(output_dir, 'model.pt')
torch.save(self.denoiser.state_dict(), model_path)
# Save model config
config_path = os.path.join(output_dir, 'model_config.yaml')
with open(config_path, 'w') as f:
yaml.dump(vars(self.model_config), f)
# Save data info
data_info_path = os.path.join(output_dir, 'data.meta.json')
data_info_dict = {
"active_atoms": self.data_info.active_atoms,
"max_node": self.data_info.max_n_nodes,
"n_atoms_per_mol_dist": self.data_info.n_nodes.tolist(),
"bond_type_dist": self.data_info.edge_types.tolist(),
"transition_E": self.data_info.transition_E.tolist(),
"atom_type_dist": self.data_info.node_types.tolist(),
"valencies": self.data_info.valency_distribution.tolist()
}
with open(data_info_path, 'w') as f:
json.dump(data_info_dict, f, indent=2)
print('GraphDiT Model and configurations saved to:', output_dir)
def disable_grads(self):
self.denoiser.disable_grads()
def forward(
self, x, edge_index, edge_attr, graph_batch, properties, no_label_index
):
raise ValueError('Not Implement')
def _forward(self, noisy_data, unconditioned=False):
noisy_x, noisy_e, properties = (
noisy_data["X_t"].to(self.model_dtype),
noisy_data["E_t"].to(self.model_dtype),
noisy_data["y_t"].to(self.model_dtype).clone(),
)
node_mask, timestep = (
noisy_data["node_mask"],
noisy_data["t"],
)
pred = self.denoiser(
noisy_x,
noisy_e,
node_mask,
properties,
timestep,
unconditioned=unconditioned,
)
return pred
def apply_noise(self, X, E, y, node_mask):
"""Sample noise and apply it to the data."""
# Sample a timestep t.
# When evaluating, the loss for t=0 is computed separately
lowest_t = 0 if self.training else 1
t_int = torch.randint(
lowest_t, self.T + 1, size=(X.size(0), 1), device=X.device
).to(
self.model_dtype
) # (bs, 1)
s_int = t_int - 1
t_float = t_int / self.T
s_float = s_int / self.T
# beta_t and alpha_s_bar are used for denoising/loss computation
beta_t = self.noise_schedule(t_normalized=t_float) # (bs, 1)
alpha_s_bar = self.noise_schedule.get_alpha_bar(t_normalized=s_float) # (bs, 1)
alpha_t_bar = self.noise_schedule.get_alpha_bar(t_normalized=t_float) # (bs, 1)
Qtb = self.transition_model.get_Qt_bar(
alpha_t_bar, X.device
) # (bs, dx_in, dx_out), (bs, de_in, de_out)
bs, n, d = X.shape
X_all = torch.cat([X, E.reshape(bs, n, -1)], dim=-1)
prob_all = X_all @ Qtb.X
probX = prob_all[:, :, : self.Xdim_output]
probE = prob_all[:, :, self.Xdim_output :].reshape(bs, n, n, -1)
sampled_t = utils.sample_discrete_features(
probX=probX, probE=probE, node_mask=node_mask
)
X_t = F.one_hot(sampled_t.X, num_classes=self.Xdim_output)
E_t = F.one_hot(sampled_t.E, num_classes=self.Edim_output)
assert (X.shape == X_t.shape) and (E.shape == E_t.shape)
y_t = y
z_t = utils.PlaceHolder(X=X_t, E=E_t, y=y_t).type_as(X_t).mask(node_mask)
noisy_data = {
"t_int": t_int,
"t": t_float,
"beta_t": beta_t,
"alpha_s_bar": alpha_s_bar,
"alpha_t_bar": alpha_t_bar,
"X_t": z_t.X,
"E_t": z_t.E,
"y_t": z_t.y,
"node_mask": node_mask,
}
return noisy_data
@torch.no_grad()
def generate(
self,
properties,
device,
guide_scale=1.,
num_nodes=None,
number_chain_steps=50,
):
properties = [float('nan') if x is None else x for x in properties]
properties = torch.tensor(properties, dtype=torch.float).reshape(1, -1).to(device)
batch_size = properties.size(0)
assert batch_size == 1
# print('self.denoiser.dtype', self.model_dtype)
if num_nodes is None:
num_nodes = self.node_dist.sample_n(batch_size, device)
else:
num_nodes = torch.LongTensor([num_nodes]).to(device)
arange = (
torch.arange(self.max_n_nodes, device=device)
.unsqueeze(0)
.expand(batch_size, -1)
)
node_mask = arange < num_nodes.unsqueeze(1)
z_T = utils.sample_discrete_feature_noise(
limit_dist=self.limit_dist, node_mask=node_mask
)
X, E = z_T.X, z_T.E
assert (E == torch.transpose(E, 1, 2)).all()
if number_chain_steps > 0:
chain_X_size = torch.Size((number_chain_steps, X.size(1)))
chain_E_size = torch.Size((number_chain_steps, E.size(1), E.size(2)))
chain_X = torch.zeros(chain_X_size)
chain_E = torch.zeros(chain_E_size)
# Iteratively sample p(z_s | z_t) for t = 1, ..., T, with s = t - 1.
y = properties
for s_int in reversed(range(0, self.T)):
s_array = s_int * torch.ones((batch_size, 1)).type_as(y)
t_array = s_array + 1
s_norm = s_array / self.T
t_norm = t_array / self.T
# Sample z_s
sampled_s, discrete_sampled_s = self.sample_p_zs_given_zt(
s_norm, t_norm, X, E, y, node_mask, guide_scale, device
)
X, E, y = sampled_s.X, sampled_s.E, sampled_s.y
if number_chain_steps > 0:
# Save the first keep_chain graphs
write_index = (s_int * number_chain_steps) // self.T
chain_X[write_index] = discrete_sampled_s.X[:1]
chain_E[write_index] = discrete_sampled_s.E[:1]
# Sample
sampled_s = sampled_s.mask(node_mask, collapse=True)
X, E, y = sampled_s.X, sampled_s.E, sampled_s.y
molecule_list = []
n = num_nodes[0]
atom_types = X[0, :n].cpu()
edge_types = E[0, :n, :n].cpu()
molecule_list.append([atom_types, edge_types])
smiles = graph_to_smiles(molecule_list, self.atom_decoder)[0]
# Visualize Chains
if number_chain_steps > 0:
final_X_chain = X[:1]
final_E_chain = E[:1]
chain_X[0] = final_X_chain # Overwrite last frame with the resulting X, E
chain_E[0] = final_E_chain
chain_X = utils.reverse_tensor(chain_X)
chain_E = utils.reverse_tensor(chain_E)
# Repeat last frame to see final sample better
chain_X = torch.cat([chain_X, chain_X[-1:].repeat(10, 1)], dim=0)
chain_E = torch.cat([chain_E, chain_E[-1:].repeat(10, 1, 1)], dim=0)
mol_img_list = self.mol_visualizer.visualize_chain(chain_X.numpy(), chain_E.numpy())
else:
mol_img_list = []
return smiles, mol_img_list
def check_valid(self, smiles):
return check_valid(smiles)
def sample_p_zs_given_zt(
self, s, t, X_t, E_t, properties, node_mask, guide_scale, device
):
"""Samples from zs ~ p(zs | zt). Only used during sampling.
if last_step, return the graph prediction as well"""
bs, n, _ = X_t.shape
beta_t = self.noise_schedule(t_normalized=t) # (bs, 1)
alpha_s_bar = self.noise_schedule.get_alpha_bar(t_normalized=s)
alpha_t_bar = self.noise_schedule.get_alpha_bar(t_normalized=t)
# Neural net predictions
noisy_data = {
"X_t": X_t,
"E_t": E_t,
"y_t": properties,
"t": t,
"node_mask": node_mask,
}
def get_prob(noisy_data, unconditioned=False):
pred = self._forward(noisy_data, unconditioned=unconditioned)
# Normalize predictions
pred_X = F.softmax(pred.X, dim=-1) # bs, n, d0
pred_E = F.softmax(pred.E, dim=-1) # bs, n, n, d0
# Retrieve transitions matrix
Qtb = self.transition_model.get_Qt_bar(alpha_t_bar, device)
Qsb = self.transition_model.get_Qt_bar(alpha_s_bar, device)
Qt = self.transition_model.get_Qt(beta_t, device)
Xt_all = torch.cat([X_t, E_t.reshape(bs, n, -1)], dim=-1)
predX_all = torch.cat([pred_X, pred_E.reshape(bs, n, -1)], dim=-1)
unnormalized_probX_all = utils.reverse_diffusion(
predX_0=predX_all, X_t=Xt_all, Qt=Qt.X, Qsb=Qsb.X, Qtb=Qtb.X
)
unnormalized_prob_X = unnormalized_probX_all[:, :, : self.Xdim_output]
unnormalized_prob_E = unnormalized_probX_all[
:, :, self.Xdim_output :
].reshape(bs, n * n, -1)
unnormalized_prob_X[torch.sum(unnormalized_prob_X, dim=-1) == 0] = 1e-5
unnormalized_prob_E[torch.sum(unnormalized_prob_E, dim=-1) == 0] = 1e-5
prob_X = unnormalized_prob_X / torch.sum(
unnormalized_prob_X, dim=-1, keepdim=True
) # bs, n, d_t-1
prob_E = unnormalized_prob_E / torch.sum(
unnormalized_prob_E, dim=-1, keepdim=True
) # bs, n, d_t-1
prob_E = prob_E.reshape(bs, n, n, pred_E.shape[-1])
return prob_X, prob_E
prob_X, prob_E = get_prob(noisy_data)
### Guidance
if guide_scale != 1:
uncon_prob_X, uncon_prob_E = get_prob(
noisy_data, unconditioned=True
)
prob_X = (
uncon_prob_X
* (prob_X / uncon_prob_X.clamp_min(1e-5)) ** guide_scale
)
prob_E = (
uncon_prob_E
* (prob_E / uncon_prob_E.clamp_min(1e-5)) ** guide_scale
)
prob_X = prob_X / prob_X.sum(dim=-1, keepdim=True).clamp_min(1e-5)
prob_E = prob_E / prob_E.sum(dim=-1, keepdim=True).clamp_min(1e-5)
# assert ((prob_X.sum(dim=-1) - 1).abs() < 1e-3).all()
# assert ((prob_E.sum(dim=-1) - 1).abs() < 1e-3).all()
sampled_s = utils.sample_discrete_features(
prob_X, prob_E, node_mask=node_mask, step=s[0, 0].item()
)
X_s = F.one_hot(sampled_s.X, num_classes=self.Xdim_output).to(self.model_dtype)
E_s = F.one_hot(sampled_s.E, num_classes=self.Edim_output).to(self.model_dtype)
assert (E_s == torch.transpose(E_s, 1, 2)).all()
assert (X_t.shape == X_s.shape) and (E_t.shape == E_s.shape)
out_one_hot = utils.PlaceHolder(X=X_s, E=E_s, y=properties)
out_discrete = utils.PlaceHolder(X=X_s, E=E_s, y=properties)
return out_one_hot.mask(node_mask).type_as(properties), out_discrete.mask(
node_mask, collapse=True
).type_as(properties)
|