liuganghuggingface's picture
Update graph_decoder/diffusion_utils.py
71df9ee verified
raw
history blame
19.5 kB
import os
import json
import yaml
import torch
import numpy as np
from torch.nn import functional as F
# from torch_geometric.utils import to_dense_adj, to_dense_batch, remove_self_loops
from types import SimpleNamespace
def dict_to_namespace(d):
return SimpleNamespace(
**{k: dict_to_namespace(v) if isinstance(v, dict) else v for k, v in d.items()}
)
class DataInfos:
def __init__(self, meta_filename="data.meta.json"):
self.all_targets = ['CH4', 'CO2', 'H2', 'N2', 'O2']
self.task_type = "gas_permeability"
if os.path.exists(meta_filename):
with open(meta_filename, "r") as f:
meta_dict = json.load(f)
else:
raise FileNotFoundError(f"Meta file {meta_filename} not found.")
self.active_atoms = meta_dict["active_atoms"]
self.max_n_nodes = meta_dict["max_node"]
self.original_max_n_nodes = meta_dict["max_node"]
self.n_nodes = torch.Tensor(meta_dict["n_atoms_per_mol_dist"])
self.edge_types = torch.Tensor(meta_dict["bond_type_dist"])
self.transition_E = torch.Tensor(meta_dict["transition_E"])
self.atom_decoder = meta_dict["active_atoms"]
node_types = torch.Tensor(meta_dict["atom_type_dist"])
active_index = (node_types > 0).nonzero().squeeze()
self.node_types = torch.Tensor(meta_dict["atom_type_dist"])[active_index]
self.nodes_dist = DistributionNodes(self.n_nodes)
self.active_index = active_index
val_len = 3 * self.original_max_n_nodes - 2
meta_val = torch.Tensor(meta_dict["valencies"])
self.valency_distribution = torch.zeros(val_len)
val_len = min(val_len, len(meta_val))
self.valency_distribution[:val_len] = meta_val[:val_len]
## for all
self.input_dims = {"X": len(self.active_atoms), "E": 5, "y": 5}
self.output_dims = {"X": len(self.active_atoms), "E": 5, "y": 5}
# self.input_dims = {"X": 11, "E": 5, "y": 5}
# self.output_dims = {"X": 11, "E": 5, "y": 5}
def load_config(config_path, data_meta_info_path):
if not os.path.exists(config_path):
raise FileNotFoundError(f"Configuration file not found: {config_path}")
if not os.path.exists(data_meta_info_path):
raise FileNotFoundError(f"Data meta info file not found: {data_meta_info_path}")
with open(config_path, "r") as file:
cfg_dict = yaml.safe_load(file)
cfg = dict_to_namespace(cfg_dict)
data_info = DataInfos(data_meta_info_path)
return cfg, data_info
# #### graph utils
class PlaceHolder:
def __init__(self, X, E, y):
self.X = X
self.E = E
self.y = y
def type_as(self, x: torch.Tensor, categorical: bool = False):
"""Changes the device and dtype of X, E, y."""
self.X = self.X.type_as(x)
self.E = self.E.type_as(x)
if categorical:
self.y = self.y.type_as(x)
return self
def mask(self, node_mask, collapse=False):
x_mask = node_mask.unsqueeze(-1) # bs, n, 1
e_mask1 = x_mask.unsqueeze(2) # bs, n, 1, 1
e_mask2 = x_mask.unsqueeze(1) # bs, 1, n, 1
if collapse:
self.X = torch.argmax(self.X, dim=-1)
self.E = torch.argmax(self.E, dim=-1)
self.X[node_mask == 0] = -1
self.E[(e_mask1 * e_mask2).squeeze(-1) == 0] = -1
else:
self.X = self.X * x_mask
self.E = self.E * e_mask1 * e_mask2
assert torch.allclose(self.E, torch.transpose(self.E, 1, 2))
return self
# def to_dense(x, edge_index, edge_attr, batch, max_num_nodes=None):
# X, node_mask = to_dense_batch(x=x, batch=batch, max_num_nodes=max_num_nodes)
# # node_mask = node_mask.float()
# edge_index, edge_attr = remove_self_loops(edge_index, edge_attr)
# if max_num_nodes is None:
# max_num_nodes = X.size(1)
# E = to_dense_adj(
# edge_index=edge_index,
# batch=batch,
# edge_attr=edge_attr,
# max_num_nodes=max_num_nodes,
# )
# E = encode_no_edge(E)
# return PlaceHolder(X=X, E=E, y=None), node_mask
# def encode_no_edge(E):
# assert len(E.shape) == 4
# if E.shape[-1] == 0:
# return E
# no_edge = torch.sum(E, dim=3) == 0
# first_elt = E[:, :, :, 0]
# first_elt[no_edge] = 1
# E[:, :, :, 0] = first_elt
# diag = (
# torch.eye(E.shape[1], dtype=torch.bool).unsqueeze(0).expand(E.shape[0], -1, -1)
# )
# E[diag] = 0
# return E
#### diffusion utils
class DistributionNodes:
def __init__(self, histogram):
"""Compute the distribution of the number of nodes in the dataset, and sample from this distribution.
historgram: dict. The keys are num_nodes, the values are counts
"""
if type(histogram) == dict:
max_n_nodes = max(histogram.keys())
prob = torch.zeros(max_n_nodes + 1)
for num_nodes, count in histogram.items():
prob[num_nodes] = count
else:
prob = histogram
self.prob = prob / prob.sum()
self.m = torch.distributions.Categorical(prob)
def sample_n(self, n_samples, device):
idx = self.m.sample((n_samples,))
return idx.to(device)
def log_prob(self, batch_n_nodes):
assert len(batch_n_nodes.size()) == 1
p = self.prob.to(batch_n_nodes.device)
probas = p[batch_n_nodes]
log_p = torch.log(probas + 1e-30)
return log_p
class PredefinedNoiseScheduleDiscrete(torch.nn.Module):
def __init__(self, noise_schedule, timesteps):
super(PredefinedNoiseScheduleDiscrete, self).__init__()
self.timesteps = timesteps
betas = cosine_beta_schedule_discrete(timesteps)
self.register_buffer("betas", torch.from_numpy(betas).float())
# 0.9999
self.alphas = 1 - torch.clamp(self.betas, min=0, max=1)
log_alpha = torch.log(self.alphas)
log_alpha_bar = torch.cumsum(log_alpha, dim=0)
self.alphas_bar = torch.exp(log_alpha_bar)
def forward(self, t_normalized=None, t_int=None):
assert int(t_normalized is None) + int(t_int is None) == 1
if t_int is None:
t_int = torch.round(t_normalized * self.timesteps)
self.betas = self.betas.type_as(t_int)
return self.betas[t_int.long()]
def get_alpha_bar(self, t_normalized=None, t_int=None):
assert int(t_normalized is None) + int(t_int is None) == 1
if t_int is None:
t_int = torch.round(t_normalized * self.timesteps)
self.alphas_bar = self.alphas_bar.type_as(t_int)
return self.alphas_bar[t_int.long()]
# class DiscreteUniformTransition:
# def __init__(self, x_classes: int, e_classes: int, y_classes: int):
# self.X_classes = x_classes
# self.E_classes = e_classes
# self.y_classes = y_classes
# self.u_x = torch.ones(1, self.X_classes, self.X_classes)
# if self.X_classes > 0:
# self.u_x = self.u_x / self.X_classes
# self.u_e = torch.ones(1, self.E_classes, self.E_classes)
# if self.E_classes > 0:
# self.u_e = self.u_e / self.E_classes
# self.u_y = torch.ones(1, self.y_classes, self.y_classes)
# if self.y_classes > 0:
# self.u_y = self.u_y / self.y_classes
# def get_Qt(self, beta_t, device, X=None, flatten_e=None):
# """Returns one-step transition matrices for X and E, from step t - 1 to step t.
# Qt = (1 - beta_t) * I + beta_t / K
# beta_t: (bs) noise level between 0 and 1
# returns: qx (bs, dx, dx), qe (bs, de, de), qy (bs, dy, dy).
# """
# beta_t = beta_t.unsqueeze(1)
# beta_t = beta_t.to(device)
# self.u_x = self.u_x.to(device)
# self.u_e = self.u_e.to(device)
# self.u_y = self.u_y.to(device)
# q_x = beta_t * self.u_x + (1 - beta_t) * torch.eye(
# self.X_classes, device=device
# ).unsqueeze(0)
# q_e = beta_t * self.u_e + (1 - beta_t) * torch.eye(
# self.E_classes, device=device
# ).unsqueeze(0)
# q_y = beta_t * self.u_y + (1 - beta_t) * torch.eye(
# self.y_classes, device=device
# ).unsqueeze(0)
# return PlaceHolder(X=q_x, E=q_e, y=q_y)
# def get_Qt_bar(self, alpha_bar_t, device, X=None, flatten_e=None):
# """Returns t-step transition matrices for X and E, from step 0 to step t.
# Qt = prod(1 - beta_t) * I + (1 - prod(1 - beta_t)) / K
# alpha_bar_t: (bs) Product of the (1 - beta_t) for each time step from 0 to t.
# returns: qx (bs, dx, dx), qe (bs, de, de), qy (bs, dy, dy).
# """
# alpha_bar_t = alpha_bar_t.unsqueeze(1)
# alpha_bar_t = alpha_bar_t.to(device)
# self.u_x = self.u_x.to(device)
# self.u_e = self.u_e.to(device)
# self.u_y = self.u_y.to(device)
# q_x = (
# alpha_bar_t * torch.eye(self.X_classes, device=device).unsqueeze(0)
# + (1 - alpha_bar_t) * self.u_x
# )
# q_e = (
# alpha_bar_t * torch.eye(self.E_classes, device=device).unsqueeze(0)
# + (1 - alpha_bar_t) * self.u_e
# )
# q_y = (
# alpha_bar_t * torch.eye(self.y_classes, device=device).unsqueeze(0)
# + (1 - alpha_bar_t) * self.u_y
# )
# return PlaceHolder(X=q_x, E=q_e, y=q_y)
class MarginalTransition:
def __init__(
self, x_marginals, e_marginals, xe_conditions, ex_conditions, y_classes, n_nodes
):
self.X_classes = len(x_marginals)
self.E_classes = len(e_marginals)
self.y_classes = y_classes
self.x_marginals = x_marginals # Dx
self.e_marginals = e_marginals # Dx, De
self.xe_conditions = xe_conditions
# print('e_marginals.dtype', e_marginals.dtype)
# print('x_marginals.dtype', x_marginals.dtype)
# print('xe_conditions.dtype', xe_conditions.dtype)
self.u_x = (
x_marginals.unsqueeze(0).expand(self.X_classes, -1).unsqueeze(0)
) # 1, Dx, Dx
self.u_e = (
e_marginals.unsqueeze(0).expand(self.E_classes, -1).unsqueeze(0)
) # 1, De, De
self.u_xe = xe_conditions.unsqueeze(0) # 1, Dx, De
self.u_ex = ex_conditions.unsqueeze(0) # 1, De, Dx
self.u = self.get_union_transition(
self.u_x, self.u_e, self.u_xe, self.u_ex, n_nodes
) # 1, Dx + n*De, Dx + n*De
def get_union_transition(self, u_x, u_e, u_xe, u_ex, n_nodes):
u_e = u_e.repeat(1, n_nodes, n_nodes) # (1, n*de, n*de)
u_xe = u_xe.repeat(1, 1, n_nodes) # (1, dx, n*de)
u_ex = u_ex.repeat(1, n_nodes, 1) # (1, n*de, dx)
u0 = torch.cat([u_x, u_xe], dim=2) # (1, dx, dx + n*de)
u1 = torch.cat([u_ex, u_e], dim=2) # (1, n*de, dx + n*de)
u = torch.cat([u0, u1], dim=1) # (1, dx + n*de, dx + n*de)
return u
def index_edge_margin(self, X, q_e, n_bond=5):
# q_e: (bs, dx, de) --> (bs, n, de)
bs, n, n_atom = X.shape
node_indices = X.argmax(-1) # (bs, n)
ind = node_indices[:, :, None].expand(bs, n, n_bond)
q_e = torch.gather(q_e, 1, ind)
return q_e
def get_Qt(self, beta_t, device):
"""Returns one-step transition matrices for X and E, from step t - 1 to step t.
Qt = (1 - beta_t) * I + beta_t / K
beta_t: (bs)
returns: q (bs, d0, d0)
"""
bs = beta_t.size(0)
d0 = self.u.size(-1)
self.u = self.u.to(device)
u = self.u.expand(bs, d0, d0)
beta_t = beta_t.to(device)
beta_t = beta_t.view(bs, 1, 1)
q = beta_t * u + (1 - beta_t) * torch.eye(d0, device=device, dtype=self.u.dtype).unsqueeze(0)
return PlaceHolder(X=q, E=None, y=None)
def get_Qt_bar(self, alpha_bar_t, device):
"""Returns t-step transition matrices for X and E, from step 0 to step t.
Qt = prod(1 - beta_t) * I + (1 - prod(1 - beta_t)) * K
alpha_bar_t: (bs, 1) roduct of the (1 - beta_t) for each time step from 0 to t.
returns: q (bs, d0, d0)
"""
bs = alpha_bar_t.size(0)
d0 = self.u.size(-1)
alpha_bar_t = alpha_bar_t.to(device)
alpha_bar_t = alpha_bar_t.view(bs, 1, 1)
self.u = self.u.to(device)
q = (
alpha_bar_t * torch.eye(d0, device=device, dtype=self.u.dtype).unsqueeze(0)
+ (1 - alpha_bar_t) * self.u
)
return PlaceHolder(X=q, E=None, y=None)
def sum_except_batch(x):
return x.reshape(x.size(0), -1).sum(dim=-1)
def assert_correctly_masked(variable, node_mask):
assert (
variable * (1 - node_mask.long())
).abs().max().item() < 1e-4, "Variables not masked properly."
def cosine_beta_schedule_discrete(timesteps, s=0.008):
"""Cosine schedule as proposed in https://openreview.net/forum?id=-NEXDKk8gZ."""
steps = timesteps + 2
x = np.linspace(0, steps, steps)
alphas_cumprod = np.cos(0.5 * np.pi * ((x / steps) + s) / (1 + s)) ** 2
alphas_cumprod = alphas_cumprod / alphas_cumprod[0]
alphas = alphas_cumprod[1:] / alphas_cumprod[:-1]
betas = 1 - alphas
return betas.squeeze()
def sample_discrete_features(probX, probE, node_mask, step=None, add_nose=True):
"""Sample features from multinomial distribution with given probabilities (probX, probE, proby)
:param probX: bs, n, dx_out node features
:param probE: bs, n, n, de_out edge features
:param proby: bs, dy_out global features.
"""
bs, n, _ = probX.shape
# Noise X
# The masked rows should define probability distributions as well
probX[~node_mask] = 1 / probX.shape[-1]
# Flatten the probability tensor to sample with multinomial
probX = probX.reshape(bs * n, -1) # (bs * n, dx_out)
# Sample X
probX = probX.clamp_min(1e-5)
probX = probX / probX.sum(dim=-1, keepdim=True)
X_t = probX.multinomial(1) # (bs * n, 1)
X_t = X_t.reshape(bs, n) # (bs, n)
# Noise E
# The masked rows should define probability distributions as well
inverse_edge_mask = ~(node_mask.unsqueeze(1) * node_mask.unsqueeze(2))
diag_mask = torch.eye(n).unsqueeze(0).expand(bs, -1, -1)
probE[inverse_edge_mask] = 1 / probE.shape[-1]
probE[diag_mask.bool()] = 1 / probE.shape[-1]
probE = probE.reshape(bs * n * n, -1) # (bs * n * n, de_out)
probE = probE.clamp_min(1e-5)
probE = probE / probE.sum(dim=-1, keepdim=True)
# Sample E
E_t = probE.multinomial(1).reshape(bs, n, n) # (bs, n, n)
E_t = torch.triu(E_t, diagonal=1)
E_t = E_t + torch.transpose(E_t, 1, 2)
return PlaceHolder(X=X_t, E=E_t, y=torch.zeros(bs, 0).type_as(X_t))
def mask_distributions(true_X, true_E, pred_X, pred_E, node_mask):
# Add a small value everywhere to avoid nans
pred_X = pred_X.clamp_min(1e-5)
pred_X = pred_X / torch.sum(pred_X, dim=-1, keepdim=True)
pred_E = pred_E.clamp_min(1e-5)
pred_E = pred_E / torch.sum(pred_E, dim=-1, keepdim=True)
# Set masked rows to arbitrary distributions, so it doesn't contribute to loss
row_X = torch.ones(true_X.size(-1), dtype=true_X.dtype, device=true_X.device)
row_E = torch.zeros(
true_E.size(-1), dtype=true_E.dtype, device=true_E.device
).clamp_min(1e-5)
row_E[0] = 1.0
diag_mask = ~torch.eye(
node_mask.size(1), device=node_mask.device, dtype=torch.bool
).unsqueeze(0)
true_X[~node_mask] = row_X
true_E[~(node_mask.unsqueeze(1) * node_mask.unsqueeze(2) * diag_mask), :] = row_E
pred_X[~node_mask] = row_X.type_as(pred_X)
pred_E[~(node_mask.unsqueeze(1) * node_mask.unsqueeze(2) * diag_mask), :] = (
row_E.type_as(pred_E)
)
return true_X, true_E, pred_X, pred_E
def forward_diffusion(X, X_t, Qt, Qsb, Qtb, X_dim):
bs, n, d = X.shape
Qt_X_T = torch.transpose(Qt.X, -2, -1) # (bs, d, d)
left_term = X_t @ Qt_X_T # (bs, N, d)
right_term = X @ Qsb.X # (bs, N, d)
numerator = left_term * right_term # (bs, N, d)
denominator = X @ Qtb.X # (bs, N, d) @ (bs, d, d) = (bs, N, d)
denominator = denominator * X_t
num_X = numerator[:, :, :X_dim]
num_E = numerator[:, :, X_dim:].reshape(bs, n * n, -1)
deno_X = denominator[:, :, :X_dim]
deno_E = denominator[:, :, X_dim:].reshape(bs, n * n, -1)
denominator = denominator.unsqueeze(-1) # (bs, N, 1)
deno_X = deno_X.sum(dim=-1, keepdim=True)
deno_E = deno_E.sum(dim=-1, keepdim=True)
deno_X[deno_X == 0.0] = 1
deno_E[deno_E == 0.0] = 1
prob_X = num_X / deno_X
prob_E = num_E / deno_E
prob_E = prob_E / prob_E.sum(dim=-1, keepdim=True)
prob_X = prob_X / prob_X.sum(dim=-1, keepdim=True)
return PlaceHolder(X=prob_X, E=prob_E, y=None)
def reverse_diffusion(predX_0, X_t, Qt, Qsb, Qtb):
"""M: X or E
Compute xt @ Qt.T * x0 @ Qsb / x0 @ Qtb @ xt.T for each possible value of x0
X_t: bs, n, dt or bs, n, n, dt
Qt: bs, d_t-1, dt
Qsb: bs, d0, d_t-1
Qtb: bs, d0, dt.
"""
Qt_T = Qt.transpose(-1, -2) # bs, N, dt
assert Qt.dim() == 3
left_term = X_t @ Qt_T # bs, N, d_t-1
right_term = predX_0 @ Qsb
numerator = left_term * right_term # bs, N, d_t-1
denominator = Qtb @ X_t.transpose(-1, -2) # bs, d0, N
denominator = denominator.transpose(-1, -2) # bs, N, d0
return numerator / denominator.clamp_min(1e-5)
def reverse_tensor(x):
return x[torch.arange(x.size(0) - 1, -1, -1)]
def sample_discrete_feature_noise(limit_dist, node_mask):
"""Sample from the limit distribution of the diffusion process"""
bs, n_max = node_mask.shape
x_limit = limit_dist.X[None, None, :].expand(bs, n_max, -1)
x_limit = x_limit.to(node_mask.device)
U_X = x_limit.flatten(end_dim=-2).multinomial(1).reshape(bs, n_max)
U_X = F.one_hot(U_X.long(), num_classes=x_limit.shape[-1]).type_as(x_limit)
e_limit = limit_dist.E[None, None, None, :].expand(bs, n_max, n_max, -1)
U_E = e_limit.flatten(end_dim=-2).multinomial(1).reshape(bs, n_max, n_max)
U_E = F.one_hot(U_E.long(), num_classes=e_limit.shape[-1]).type_as(x_limit)
U_X = U_X.to(node_mask.device)
U_E = U_E.to(node_mask.device)
# Get upper triangular part of edge noise, without main diagonal
upper_triangular_mask = torch.zeros_like(U_E)
indices = torch.triu_indices(row=U_E.size(1), col=U_E.size(2), offset=1)
upper_triangular_mask[:, indices[0], indices[1], :] = 1
U_E = U_E * upper_triangular_mask
U_E = U_E + torch.transpose(U_E, 1, 2)
assert (U_E == torch.transpose(U_E, 1, 2)).all()
return PlaceHolder(X=U_X, E=U_E, y=None).mask(node_mask)
def index_QE(X, q_e, n_bond=5):
bs, n, n_atom = X.shape
node_indices = X.argmax(-1) # (bs, n)
exp_ind1 = node_indices[:, :, None, None, None].expand(
bs, n, n_atom, n_bond, n_bond
)
exp_ind2 = node_indices[:, :, None, None, None].expand(bs, n, n, n_bond, n_bond)
q_e = torch.gather(q_e, 1, exp_ind1)
q_e = torch.gather(q_e, 2, exp_ind2) # (bs, n, n, n_bond, n_bond)
node_mask = X.sum(-1) != 0
no_edge = (~node_mask)[:, :, None] & (~node_mask)[:, None, :]
q_e[no_edge] = torch.tensor([1, 0, 0, 0, 0]).type_as(q_e)
return q_e