|
import os |
|
import json |
|
import yaml |
|
|
|
import torch |
|
import numpy as np |
|
from torch.nn import functional as F |
|
|
|
from types import SimpleNamespace |
|
|
|
def dict_to_namespace(d): |
|
return SimpleNamespace( |
|
**{k: dict_to_namespace(v) if isinstance(v, dict) else v for k, v in d.items()} |
|
) |
|
|
|
class DataInfos: |
|
def __init__(self, meta_filename="data.meta.json"): |
|
self.all_targets = ['CH4', 'CO2', 'H2', 'N2', 'O2'] |
|
self.task_type = "gas_permeability" |
|
if os.path.exists(meta_filename): |
|
with open(meta_filename, "r") as f: |
|
meta_dict = json.load(f) |
|
else: |
|
raise FileNotFoundError(f"Meta file {meta_filename} not found.") |
|
|
|
self.active_atoms = meta_dict["active_atoms"] |
|
self.max_n_nodes = meta_dict["max_node"] |
|
self.original_max_n_nodes = meta_dict["max_node"] |
|
self.n_nodes = torch.Tensor(meta_dict["n_atoms_per_mol_dist"]) |
|
self.edge_types = torch.Tensor(meta_dict["bond_type_dist"]) |
|
self.transition_E = torch.Tensor(meta_dict["transition_E"]) |
|
|
|
self.atom_decoder = meta_dict["active_atoms"] |
|
node_types = torch.Tensor(meta_dict["atom_type_dist"]) |
|
active_index = (node_types > 0).nonzero().squeeze() |
|
self.node_types = torch.Tensor(meta_dict["atom_type_dist"])[active_index] |
|
self.nodes_dist = DistributionNodes(self.n_nodes) |
|
self.active_index = active_index |
|
|
|
val_len = 3 * self.original_max_n_nodes - 2 |
|
meta_val = torch.Tensor(meta_dict["valencies"]) |
|
self.valency_distribution = torch.zeros(val_len) |
|
val_len = min(val_len, len(meta_val)) |
|
self.valency_distribution[:val_len] = meta_val[:val_len] |
|
|
|
self.input_dims = {"X": len(self.active_atoms), "E": 5, "y": 5} |
|
self.output_dims = {"X": len(self.active_atoms), "E": 5, "y": 5} |
|
|
|
|
|
|
|
def load_config(config_path, data_meta_info_path): |
|
if not os.path.exists(config_path): |
|
raise FileNotFoundError(f"Configuration file not found: {config_path}") |
|
|
|
if not os.path.exists(data_meta_info_path): |
|
raise FileNotFoundError(f"Data meta info file not found: {data_meta_info_path}") |
|
|
|
with open(config_path, "r") as file: |
|
cfg_dict = yaml.safe_load(file) |
|
|
|
cfg = dict_to_namespace(cfg_dict) |
|
|
|
data_info = DataInfos(data_meta_info_path) |
|
return cfg, data_info |
|
|
|
|
|
|
|
class PlaceHolder: |
|
def __init__(self, X, E, y): |
|
self.X = X |
|
self.E = E |
|
self.y = y |
|
|
|
def type_as(self, x: torch.Tensor, categorical: bool = False): |
|
"""Changes the device and dtype of X, E, y.""" |
|
self.X = self.X.type_as(x) |
|
self.E = self.E.type_as(x) |
|
if categorical: |
|
self.y = self.y.type_as(x) |
|
return self |
|
|
|
def mask(self, node_mask, collapse=False): |
|
x_mask = node_mask.unsqueeze(-1) |
|
e_mask1 = x_mask.unsqueeze(2) |
|
e_mask2 = x_mask.unsqueeze(1) |
|
|
|
if collapse: |
|
self.X = torch.argmax(self.X, dim=-1) |
|
self.E = torch.argmax(self.E, dim=-1) |
|
|
|
self.X[node_mask == 0] = -1 |
|
self.E[(e_mask1 * e_mask2).squeeze(-1) == 0] = -1 |
|
else: |
|
self.X = self.X * x_mask |
|
self.E = self.E * e_mask1 * e_mask2 |
|
assert torch.allclose(self.E, torch.transpose(self.E, 1, 2)) |
|
return self |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class DistributionNodes: |
|
def __init__(self, histogram): |
|
"""Compute the distribution of the number of nodes in the dataset, and sample from this distribution. |
|
historgram: dict. The keys are num_nodes, the values are counts |
|
""" |
|
|
|
if type(histogram) == dict: |
|
max_n_nodes = max(histogram.keys()) |
|
prob = torch.zeros(max_n_nodes + 1) |
|
for num_nodes, count in histogram.items(): |
|
prob[num_nodes] = count |
|
else: |
|
prob = histogram |
|
|
|
self.prob = prob / prob.sum() |
|
self.m = torch.distributions.Categorical(prob) |
|
|
|
def sample_n(self, n_samples, device): |
|
idx = self.m.sample((n_samples,)) |
|
return idx.to(device) |
|
|
|
def log_prob(self, batch_n_nodes): |
|
assert len(batch_n_nodes.size()) == 1 |
|
p = self.prob.to(batch_n_nodes.device) |
|
|
|
probas = p[batch_n_nodes] |
|
log_p = torch.log(probas + 1e-30) |
|
return log_p |
|
|
|
|
|
class PredefinedNoiseScheduleDiscrete(torch.nn.Module): |
|
def __init__(self, noise_schedule, timesteps): |
|
super(PredefinedNoiseScheduleDiscrete, self).__init__() |
|
self.timesteps = timesteps |
|
|
|
betas = cosine_beta_schedule_discrete(timesteps) |
|
self.register_buffer("betas", torch.from_numpy(betas).float()) |
|
|
|
|
|
self.alphas = 1 - torch.clamp(self.betas, min=0, max=1) |
|
|
|
log_alpha = torch.log(self.alphas) |
|
log_alpha_bar = torch.cumsum(log_alpha, dim=0) |
|
self.alphas_bar = torch.exp(log_alpha_bar) |
|
|
|
def forward(self, t_normalized=None, t_int=None): |
|
assert int(t_normalized is None) + int(t_int is None) == 1 |
|
if t_int is None: |
|
t_int = torch.round(t_normalized * self.timesteps) |
|
self.betas = self.betas.type_as(t_int) |
|
return self.betas[t_int.long()] |
|
|
|
def get_alpha_bar(self, t_normalized=None, t_int=None): |
|
assert int(t_normalized is None) + int(t_int is None) == 1 |
|
if t_int is None: |
|
t_int = torch.round(t_normalized * self.timesteps) |
|
self.alphas_bar = self.alphas_bar.type_as(t_int) |
|
return self.alphas_bar[t_int.long()] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class MarginalTransition: |
|
def __init__( |
|
self, x_marginals, e_marginals, xe_conditions, ex_conditions, y_classes, n_nodes |
|
): |
|
self.X_classes = len(x_marginals) |
|
self.E_classes = len(e_marginals) |
|
self.y_classes = y_classes |
|
self.x_marginals = x_marginals |
|
self.e_marginals = e_marginals |
|
self.xe_conditions = xe_conditions |
|
|
|
|
|
|
|
|
|
self.u_x = ( |
|
x_marginals.unsqueeze(0).expand(self.X_classes, -1).unsqueeze(0) |
|
) |
|
self.u_e = ( |
|
e_marginals.unsqueeze(0).expand(self.E_classes, -1).unsqueeze(0) |
|
) |
|
self.u_xe = xe_conditions.unsqueeze(0) |
|
self.u_ex = ex_conditions.unsqueeze(0) |
|
self.u = self.get_union_transition( |
|
self.u_x, self.u_e, self.u_xe, self.u_ex, n_nodes |
|
) |
|
|
|
def get_union_transition(self, u_x, u_e, u_xe, u_ex, n_nodes): |
|
u_e = u_e.repeat(1, n_nodes, n_nodes) |
|
u_xe = u_xe.repeat(1, 1, n_nodes) |
|
u_ex = u_ex.repeat(1, n_nodes, 1) |
|
u0 = torch.cat([u_x, u_xe], dim=2) |
|
u1 = torch.cat([u_ex, u_e], dim=2) |
|
u = torch.cat([u0, u1], dim=1) |
|
return u |
|
|
|
def index_edge_margin(self, X, q_e, n_bond=5): |
|
|
|
bs, n, n_atom = X.shape |
|
node_indices = X.argmax(-1) |
|
ind = node_indices[:, :, None].expand(bs, n, n_bond) |
|
q_e = torch.gather(q_e, 1, ind) |
|
return q_e |
|
|
|
def get_Qt(self, beta_t, device): |
|
"""Returns one-step transition matrices for X and E, from step t - 1 to step t. |
|
Qt = (1 - beta_t) * I + beta_t / K |
|
beta_t: (bs) |
|
returns: q (bs, d0, d0) |
|
""" |
|
bs = beta_t.size(0) |
|
d0 = self.u.size(-1) |
|
self.u = self.u.to(device) |
|
u = self.u.expand(bs, d0, d0) |
|
|
|
beta_t = beta_t.to(device) |
|
beta_t = beta_t.view(bs, 1, 1) |
|
q = beta_t * u + (1 - beta_t) * torch.eye(d0, device=device, dtype=self.u.dtype).unsqueeze(0) |
|
|
|
return PlaceHolder(X=q, E=None, y=None) |
|
|
|
def get_Qt_bar(self, alpha_bar_t, device): |
|
"""Returns t-step transition matrices for X and E, from step 0 to step t. |
|
Qt = prod(1 - beta_t) * I + (1 - prod(1 - beta_t)) * K |
|
alpha_bar_t: (bs, 1) roduct of the (1 - beta_t) for each time step from 0 to t. |
|
returns: q (bs, d0, d0) |
|
""" |
|
bs = alpha_bar_t.size(0) |
|
d0 = self.u.size(-1) |
|
alpha_bar_t = alpha_bar_t.to(device) |
|
alpha_bar_t = alpha_bar_t.view(bs, 1, 1) |
|
self.u = self.u.to(device) |
|
q = ( |
|
alpha_bar_t * torch.eye(d0, device=device, dtype=self.u.dtype).unsqueeze(0) |
|
+ (1 - alpha_bar_t) * self.u |
|
) |
|
|
|
return PlaceHolder(X=q, E=None, y=None) |
|
|
|
|
|
def sum_except_batch(x): |
|
return x.reshape(x.size(0), -1).sum(dim=-1) |
|
|
|
def assert_correctly_masked(variable, node_mask): |
|
assert ( |
|
variable * (1 - node_mask.long()) |
|
).abs().max().item() < 1e-4, "Variables not masked properly." |
|
|
|
def cosine_beta_schedule_discrete(timesteps, s=0.008): |
|
"""Cosine schedule as proposed in https://openreview.net/forum?id=-NEXDKk8gZ.""" |
|
steps = timesteps + 2 |
|
x = np.linspace(0, steps, steps) |
|
|
|
alphas_cumprod = np.cos(0.5 * np.pi * ((x / steps) + s) / (1 + s)) ** 2 |
|
alphas_cumprod = alphas_cumprod / alphas_cumprod[0] |
|
alphas = alphas_cumprod[1:] / alphas_cumprod[:-1] |
|
betas = 1 - alphas |
|
return betas.squeeze() |
|
|
|
|
|
def sample_discrete_features(probX, probE, node_mask, step=None, add_nose=True): |
|
"""Sample features from multinomial distribution with given probabilities (probX, probE, proby) |
|
:param probX: bs, n, dx_out node features |
|
:param probE: bs, n, n, de_out edge features |
|
:param proby: bs, dy_out global features. |
|
""" |
|
bs, n, _ = probX.shape |
|
|
|
|
|
|
|
probX[~node_mask] = 1 / probX.shape[-1] |
|
|
|
|
|
probX = probX.reshape(bs * n, -1) |
|
|
|
|
|
probX = probX.clamp_min(1e-5) |
|
probX = probX / probX.sum(dim=-1, keepdim=True) |
|
X_t = probX.multinomial(1) |
|
X_t = X_t.reshape(bs, n) |
|
|
|
|
|
|
|
inverse_edge_mask = ~(node_mask.unsqueeze(1) * node_mask.unsqueeze(2)) |
|
diag_mask = torch.eye(n).unsqueeze(0).expand(bs, -1, -1) |
|
|
|
probE[inverse_edge_mask] = 1 / probE.shape[-1] |
|
probE[diag_mask.bool()] = 1 / probE.shape[-1] |
|
probE = probE.reshape(bs * n * n, -1) |
|
probE = probE.clamp_min(1e-5) |
|
probE = probE / probE.sum(dim=-1, keepdim=True) |
|
|
|
|
|
E_t = probE.multinomial(1).reshape(bs, n, n) |
|
E_t = torch.triu(E_t, diagonal=1) |
|
E_t = E_t + torch.transpose(E_t, 1, 2) |
|
|
|
return PlaceHolder(X=X_t, E=E_t, y=torch.zeros(bs, 0).type_as(X_t)) |
|
|
|
|
|
def mask_distributions(true_X, true_E, pred_X, pred_E, node_mask): |
|
|
|
pred_X = pred_X.clamp_min(1e-5) |
|
pred_X = pred_X / torch.sum(pred_X, dim=-1, keepdim=True) |
|
|
|
pred_E = pred_E.clamp_min(1e-5) |
|
pred_E = pred_E / torch.sum(pred_E, dim=-1, keepdim=True) |
|
|
|
|
|
row_X = torch.ones(true_X.size(-1), dtype=true_X.dtype, device=true_X.device) |
|
row_E = torch.zeros( |
|
true_E.size(-1), dtype=true_E.dtype, device=true_E.device |
|
).clamp_min(1e-5) |
|
row_E[0] = 1.0 |
|
|
|
diag_mask = ~torch.eye( |
|
node_mask.size(1), device=node_mask.device, dtype=torch.bool |
|
).unsqueeze(0) |
|
true_X[~node_mask] = row_X |
|
true_E[~(node_mask.unsqueeze(1) * node_mask.unsqueeze(2) * diag_mask), :] = row_E |
|
pred_X[~node_mask] = row_X.type_as(pred_X) |
|
pred_E[~(node_mask.unsqueeze(1) * node_mask.unsqueeze(2) * diag_mask), :] = ( |
|
row_E.type_as(pred_E) |
|
) |
|
|
|
return true_X, true_E, pred_X, pred_E |
|
|
|
|
|
def forward_diffusion(X, X_t, Qt, Qsb, Qtb, X_dim): |
|
bs, n, d = X.shape |
|
|
|
Qt_X_T = torch.transpose(Qt.X, -2, -1) |
|
left_term = X_t @ Qt_X_T |
|
right_term = X @ Qsb.X |
|
|
|
numerator = left_term * right_term |
|
denominator = X @ Qtb.X |
|
denominator = denominator * X_t |
|
|
|
num_X = numerator[:, :, :X_dim] |
|
num_E = numerator[:, :, X_dim:].reshape(bs, n * n, -1) |
|
|
|
deno_X = denominator[:, :, :X_dim] |
|
deno_E = denominator[:, :, X_dim:].reshape(bs, n * n, -1) |
|
|
|
denominator = denominator.unsqueeze(-1) |
|
|
|
deno_X = deno_X.sum(dim=-1, keepdim=True) |
|
deno_E = deno_E.sum(dim=-1, keepdim=True) |
|
|
|
deno_X[deno_X == 0.0] = 1 |
|
deno_E[deno_E == 0.0] = 1 |
|
prob_X = num_X / deno_X |
|
prob_E = num_E / deno_E |
|
|
|
prob_E = prob_E / prob_E.sum(dim=-1, keepdim=True) |
|
prob_X = prob_X / prob_X.sum(dim=-1, keepdim=True) |
|
return PlaceHolder(X=prob_X, E=prob_E, y=None) |
|
|
|
|
|
def reverse_diffusion(predX_0, X_t, Qt, Qsb, Qtb): |
|
"""M: X or E |
|
Compute xt @ Qt.T * x0 @ Qsb / x0 @ Qtb @ xt.T for each possible value of x0 |
|
X_t: bs, n, dt or bs, n, n, dt |
|
Qt: bs, d_t-1, dt |
|
Qsb: bs, d0, d_t-1 |
|
Qtb: bs, d0, dt. |
|
""" |
|
Qt_T = Qt.transpose(-1, -2) |
|
assert Qt.dim() == 3 |
|
left_term = X_t @ Qt_T |
|
right_term = predX_0 @ Qsb |
|
numerator = left_term * right_term |
|
|
|
denominator = Qtb @ X_t.transpose(-1, -2) |
|
denominator = denominator.transpose(-1, -2) |
|
return numerator / denominator.clamp_min(1e-5) |
|
|
|
def reverse_tensor(x): |
|
return x[torch.arange(x.size(0) - 1, -1, -1)] |
|
|
|
def sample_discrete_feature_noise(limit_dist, node_mask): |
|
"""Sample from the limit distribution of the diffusion process""" |
|
bs, n_max = node_mask.shape |
|
x_limit = limit_dist.X[None, None, :].expand(bs, n_max, -1) |
|
x_limit = x_limit.to(node_mask.device) |
|
|
|
U_X = x_limit.flatten(end_dim=-2).multinomial(1).reshape(bs, n_max) |
|
U_X = F.one_hot(U_X.long(), num_classes=x_limit.shape[-1]).type_as(x_limit) |
|
|
|
e_limit = limit_dist.E[None, None, None, :].expand(bs, n_max, n_max, -1) |
|
U_E = e_limit.flatten(end_dim=-2).multinomial(1).reshape(bs, n_max, n_max) |
|
U_E = F.one_hot(U_E.long(), num_classes=e_limit.shape[-1]).type_as(x_limit) |
|
|
|
U_X = U_X.to(node_mask.device) |
|
U_E = U_E.to(node_mask.device) |
|
|
|
|
|
upper_triangular_mask = torch.zeros_like(U_E) |
|
indices = torch.triu_indices(row=U_E.size(1), col=U_E.size(2), offset=1) |
|
upper_triangular_mask[:, indices[0], indices[1], :] = 1 |
|
|
|
U_E = U_E * upper_triangular_mask |
|
U_E = U_E + torch.transpose(U_E, 1, 2) |
|
|
|
assert (U_E == torch.transpose(U_E, 1, 2)).all() |
|
return PlaceHolder(X=U_X, E=U_E, y=None).mask(node_mask) |
|
|
|
|
|
def index_QE(X, q_e, n_bond=5): |
|
bs, n, n_atom = X.shape |
|
node_indices = X.argmax(-1) |
|
|
|
exp_ind1 = node_indices[:, :, None, None, None].expand( |
|
bs, n, n_atom, n_bond, n_bond |
|
) |
|
exp_ind2 = node_indices[:, :, None, None, None].expand(bs, n, n, n_bond, n_bond) |
|
|
|
q_e = torch.gather(q_e, 1, exp_ind1) |
|
q_e = torch.gather(q_e, 2, exp_ind2) |
|
|
|
node_mask = X.sum(-1) != 0 |
|
no_edge = (~node_mask)[:, :, None] & (~node_mask)[:, None, :] |
|
q_e[no_edge] = torch.tensor([1, 0, 0, 0, 0]).type_as(q_e) |
|
|
|
return q_e |