liuganghuggingface
commited on
Update graph_decoder/diffusion_model.py
Browse files- graph_decoder/diffusion_model.py +20 -55
graph_decoder/diffusion_model.py
CHANGED
@@ -43,19 +43,20 @@ class GraphDiT(nn.Module):
|
|
43 |
self.hidden_size = dm_cfg.hidden_size
|
44 |
self.mol_visualizer = MolecularVisualization(self.atom_decoder)
|
45 |
|
46 |
-
self.denoiser = Transformer(
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
)
|
|
|
|
|
57 |
self.model_dtype = model_dtype
|
58 |
-
|
59 |
self.noise_schedule = utils.PredefinedNoiseScheduleDiscrete(
|
60 |
dm_cfg.diffusion_noise_schedule, timesteps=dm_cfg.diffusion_steps
|
61 |
)
|
@@ -86,53 +87,17 @@ class GraphDiT(nn.Module):
|
|
86 |
)
|
87 |
self.limit_dist = utils.PlaceHolder(X=x_marginals, E=e_marginals, y=None)
|
88 |
|
89 |
-
|
90 |
-
# self = super().to(*args, **kwargs)
|
91 |
-
# self.model_dtype = next(self.denoiser.parameters()).dtype
|
92 |
-
# return self
|
93 |
-
|
94 |
-
def init_model(self, model_dir, verbose=False):
|
95 |
model_file = os.path.join(model_dir, 'model.pt')
|
96 |
if os.path.exists(model_file):
|
97 |
-
self.denoiser.load_state_dict(torch.load(model_file, map_location='cpu', weights_only=True))
|
|
|
98 |
else:
|
99 |
raise FileNotFoundError(f"Model file not found: {model_file}")
|
100 |
-
|
101 |
-
if verbose:
|
102 |
-
print('GraphDiT Denoiser Model initialized.')
|
103 |
-
print('Denoiser model:\n', self.denoiser)
|
104 |
-
|
105 |
-
def save_pretrained(self, output_dir):
|
106 |
-
if not os.path.exists(output_dir):
|
107 |
-
os.makedirs(output_dir)
|
108 |
-
|
109 |
-
# Save model
|
110 |
-
model_path = os.path.join(output_dir, 'model.pt')
|
111 |
-
torch.save(self.denoiser.state_dict(), model_path)
|
112 |
-
|
113 |
-
# Save model config
|
114 |
-
config_path = os.path.join(output_dir, 'model_config.yaml')
|
115 |
-
with open(config_path, 'w') as f:
|
116 |
-
yaml.dump(vars(self.model_config), f)
|
117 |
-
|
118 |
-
# Save data info
|
119 |
-
data_info_path = os.path.join(output_dir, 'data.meta.json')
|
120 |
-
data_info_dict = {
|
121 |
-
"active_atoms": self.data_info.active_atoms,
|
122 |
-
"max_node": self.data_info.max_n_nodes,
|
123 |
-
"n_atoms_per_mol_dist": self.data_info.n_nodes.tolist(),
|
124 |
-
"bond_type_dist": self.data_info.edge_types.tolist(),
|
125 |
-
"transition_E": self.data_info.transition_E.tolist(),
|
126 |
-
"atom_type_dist": self.data_info.node_types.tolist(),
|
127 |
-
"valencies": self.data_info.valency_distribution.tolist()
|
128 |
-
}
|
129 |
-
with open(data_info_path, 'w') as f:
|
130 |
-
json.dump(data_info_dict, f, indent=2)
|
131 |
-
|
132 |
-
print('GraphDiT Model and configurations saved to:', output_dir)
|
133 |
|
134 |
def disable_grads(self):
|
135 |
-
|
|
|
136 |
|
137 |
def forward(
|
138 |
self, x, edge_index, edge_attr, graph_batch, properties, no_label_index
|
@@ -215,7 +180,7 @@ class GraphDiT(nn.Module):
|
|
215 |
}
|
216 |
return noisy_data
|
217 |
|
218 |
-
|
219 |
def generate(
|
220 |
self,
|
221 |
properties,
|
@@ -307,7 +272,7 @@ class GraphDiT(nn.Module):
|
|
307 |
|
308 |
def check_valid(self, smiles):
|
309 |
return check_valid(smiles)
|
310 |
-
|
311 |
def sample_p_zs_given_zt(
|
312 |
self, s, t, X_t, E_t, properties, node_mask, guide_scale, device
|
313 |
):
|
|
|
43 |
self.hidden_size = dm_cfg.hidden_size
|
44 |
self.mol_visualizer = MolecularVisualization(self.atom_decoder)
|
45 |
|
46 |
+
# self.denoiser = Transformer(
|
47 |
+
# max_n_nodes=self.max_n_nodes,
|
48 |
+
# hidden_size=dm_cfg.hidden_size,
|
49 |
+
# depth=dm_cfg.depth,
|
50 |
+
# num_heads=dm_cfg.num_heads,
|
51 |
+
# mlp_ratio=dm_cfg.mlp_ratio,
|
52 |
+
# drop_condition=dm_cfg.drop_condition,
|
53 |
+
# Xdim=self.Xdim,
|
54 |
+
# Edim=self.Edim,
|
55 |
+
# ydim=self.ydim,
|
56 |
+
# )
|
57 |
+
self.denoiser = None
|
58 |
+
|
59 |
self.model_dtype = model_dtype
|
|
|
60 |
self.noise_schedule = utils.PredefinedNoiseScheduleDiscrete(
|
61 |
dm_cfg.diffusion_noise_schedule, timesteps=dm_cfg.diffusion_steps
|
62 |
)
|
|
|
87 |
)
|
88 |
self.limit_dist = utils.PlaceHolder(X=x_marginals, E=e_marginals, y=None)
|
89 |
|
90 |
+
def init_model(self, model_dir):
|
|
|
|
|
|
|
|
|
|
|
91 |
model_file = os.path.join(model_dir, 'model.pt')
|
92 |
if os.path.exists(model_file):
|
93 |
+
# self.denoiser.load_state_dict(torch.load(model_file, map_location='cpu', weights_only=True))
|
94 |
+
pass
|
95 |
else:
|
96 |
raise FileNotFoundError(f"Model file not found: {model_file}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
97 |
|
98 |
def disable_grads(self):
|
99 |
+
pass
|
100 |
+
# self.denoiser.disable_grads()
|
101 |
|
102 |
def forward(
|
103 |
self, x, edge_index, edge_attr, graph_batch, properties, no_label_index
|
|
|
180 |
}
|
181 |
return noisy_data
|
182 |
|
183 |
+
@torch.no_grad()
|
184 |
def generate(
|
185 |
self,
|
186 |
properties,
|
|
|
272 |
|
273 |
def check_valid(self, smiles):
|
274 |
return check_valid(smiles)
|
275 |
+
|
276 |
def sample_p_zs_given_zt(
|
277 |
self, s, t, X_t, E_t, properties, node_mask, guide_scale, device
|
278 |
):
|