liuganghuggingface
commited on
Upload app.py with huggingface_hub
Browse files
app.py
CHANGED
@@ -6,7 +6,374 @@ import random
|
|
6 |
from rdkit import Chem
|
7 |
from rdkit.Chem import Draw
|
8 |
|
9 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
def load_graph_decoder(path='model_labeled'):
|
11 |
model = GraphDiT(
|
12 |
model_config_path=f"{path}/config.yaml",
|
|
|
6 |
from rdkit import Chem
|
7 |
from rdkit.Chem import Draw
|
8 |
|
9 |
+
#####
|
10 |
+
|
11 |
+
import os
|
12 |
+
import yaml
|
13 |
+
import json
|
14 |
+
|
15 |
+
import torch.nn.functional as F
|
16 |
+
from graph_decoder import diffusion_utils as utils
|
17 |
+
from graph_decoder.molecule_utils import graph_to_smiles, check_valid
|
18 |
+
from graph_decoder.transformer import Transformer
|
19 |
+
from graph_decoder.visualize_utils import MolecularVisualization
|
20 |
+
|
21 |
+
class GraphDiT(nn.Module):
|
22 |
+
def __init__(
|
23 |
+
self,
|
24 |
+
model_config_path,
|
25 |
+
data_info_path,
|
26 |
+
model_dtype,
|
27 |
+
):
|
28 |
+
super().__init__()
|
29 |
+
pass
|
30 |
+
|
31 |
+
# dm_cfg, data_info = utils.load_config(model_config_path, data_info_path)
|
32 |
+
|
33 |
+
# input_dims = data_info.input_dims
|
34 |
+
# output_dims = data_info.output_dims
|
35 |
+
# nodes_dist = data_info.nodes_dist
|
36 |
+
# active_index = data_info.active_index
|
37 |
+
|
38 |
+
# self.model_config = dm_cfg
|
39 |
+
# self.data_info = data_info
|
40 |
+
# self.T = dm_cfg.diffusion_steps
|
41 |
+
# self.Xdim = input_dims["X"]
|
42 |
+
# self.Edim = input_dims["E"]
|
43 |
+
# self.ydim = input_dims["y"]
|
44 |
+
# self.Xdim_output = output_dims["X"]
|
45 |
+
# self.Edim_output = output_dims["E"]
|
46 |
+
# self.ydim_output = output_dims["y"]
|
47 |
+
# self.node_dist = nodes_dist
|
48 |
+
# self.active_index = active_index
|
49 |
+
# self.max_n_nodes = data_info.max_n_nodes
|
50 |
+
# self.atom_decoder = data_info.atom_decoder
|
51 |
+
# self.hidden_size = dm_cfg.hidden_size
|
52 |
+
# self.mol_visualizer = MolecularVisualization(self.atom_decoder)
|
53 |
+
|
54 |
+
# self.denoiser = Transformer(
|
55 |
+
# max_n_nodes=self.max_n_nodes,
|
56 |
+
# hidden_size=dm_cfg.hidden_size,
|
57 |
+
# depth=dm_cfg.depth,
|
58 |
+
# num_heads=dm_cfg.num_heads,
|
59 |
+
# mlp_ratio=dm_cfg.mlp_ratio,
|
60 |
+
# drop_condition=dm_cfg.drop_condition,
|
61 |
+
# Xdim=self.Xdim,
|
62 |
+
# Edim=self.Edim,
|
63 |
+
# ydim=self.ydim,
|
64 |
+
# )
|
65 |
+
|
66 |
+
# self.model_dtype = model_dtype
|
67 |
+
# self.noise_schedule = utils.PredefinedNoiseScheduleDiscrete(
|
68 |
+
# dm_cfg.diffusion_noise_schedule, timesteps=dm_cfg.diffusion_steps
|
69 |
+
# )
|
70 |
+
# x_marginals = data_info.node_types.to(self.model_dtype) / torch.sum(
|
71 |
+
# data_info.node_types.to(self.model_dtype)
|
72 |
+
# )
|
73 |
+
# e_marginals = data_info.edge_types.to(self.model_dtype) / torch.sum(
|
74 |
+
# data_info.edge_types.to(self.model_dtype)
|
75 |
+
# )
|
76 |
+
# x_marginals = x_marginals / x_marginals.sum()
|
77 |
+
# e_marginals = e_marginals / e_marginals.sum()
|
78 |
+
|
79 |
+
# xe_conditions = data_info.transition_E.to(self.model_dtype)
|
80 |
+
# xe_conditions = xe_conditions[self.active_index][:, self.active_index]
|
81 |
+
|
82 |
+
# xe_conditions = xe_conditions.sum(dim=1)
|
83 |
+
# ex_conditions = xe_conditions.t()
|
84 |
+
# xe_conditions = xe_conditions / xe_conditions.sum(dim=-1, keepdim=True)
|
85 |
+
# ex_conditions = ex_conditions / ex_conditions.sum(dim=-1, keepdim=True)
|
86 |
+
|
87 |
+
# self.transition_model = utils.MarginalTransition(
|
88 |
+
# x_marginals=x_marginals,
|
89 |
+
# e_marginals=e_marginals,
|
90 |
+
# xe_conditions=xe_conditions,
|
91 |
+
# ex_conditions=ex_conditions,
|
92 |
+
# y_classes=self.ydim_output,
|
93 |
+
# n_nodes=self.max_n_nodes,
|
94 |
+
# )
|
95 |
+
# self.limit_dist = utils.PlaceHolder(X=x_marginals, E=e_marginals, y=None)
|
96 |
+
|
97 |
+
def init_model(self, model_dir):
|
98 |
+
model_file = os.path.join(model_dir, 'model.pt')
|
99 |
+
if os.path.exists(model_file):
|
100 |
+
self.denoiser.load_state_dict(torch.load(model_file, map_location='cpu', weights_only=True))
|
101 |
+
else:
|
102 |
+
raise FileNotFoundError(f"Model file not found: {model_file}")
|
103 |
+
|
104 |
+
def disable_grads(self):
|
105 |
+
self.denoiser.disable_grads()
|
106 |
+
|
107 |
+
def forward(
|
108 |
+
self, x, edge_index, edge_attr, graph_batch, properties, no_label_index
|
109 |
+
):
|
110 |
+
raise ValueError('Not Implement')
|
111 |
+
|
112 |
+
def _forward(self, noisy_data, unconditioned=False):
|
113 |
+
noisy_x, noisy_e, properties = (
|
114 |
+
noisy_data["X_t"].to(self.model_dtype),
|
115 |
+
noisy_data["E_t"].to(self.model_dtype),
|
116 |
+
noisy_data["y_t"].to(self.model_dtype).clone(),
|
117 |
+
)
|
118 |
+
node_mask, timestep = (
|
119 |
+
noisy_data["node_mask"],
|
120 |
+
noisy_data["t"],
|
121 |
+
)
|
122 |
+
|
123 |
+
pred = self.denoiser(
|
124 |
+
noisy_x,
|
125 |
+
noisy_e,
|
126 |
+
node_mask,
|
127 |
+
properties,
|
128 |
+
timestep,
|
129 |
+
unconditioned=unconditioned,
|
130 |
+
)
|
131 |
+
return pred
|
132 |
+
|
133 |
+
def apply_noise(self, X, E, y, node_mask):
|
134 |
+
"""Sample noise and apply it to the data."""
|
135 |
+
|
136 |
+
# Sample a timestep t.
|
137 |
+
# When evaluating, the loss for t=0 is computed separately
|
138 |
+
lowest_t = 0 if self.training else 1
|
139 |
+
t_int = torch.randint(
|
140 |
+
lowest_t, self.T + 1, size=(X.size(0), 1), device=X.device
|
141 |
+
).to(
|
142 |
+
self.model_dtype
|
143 |
+
) # (bs, 1)
|
144 |
+
s_int = t_int - 1
|
145 |
+
|
146 |
+
t_float = t_int / self.T
|
147 |
+
s_float = s_int / self.T
|
148 |
+
|
149 |
+
# beta_t and alpha_s_bar are used for denoising/loss computation
|
150 |
+
beta_t = self.noise_schedule(t_normalized=t_float) # (bs, 1)
|
151 |
+
alpha_s_bar = self.noise_schedule.get_alpha_bar(t_normalized=s_float) # (bs, 1)
|
152 |
+
alpha_t_bar = self.noise_schedule.get_alpha_bar(t_normalized=t_float) # (bs, 1)
|
153 |
+
|
154 |
+
Qtb = self.transition_model.get_Qt_bar(
|
155 |
+
alpha_t_bar, X.device
|
156 |
+
) # (bs, dx_in, dx_out), (bs, de_in, de_out)
|
157 |
+
|
158 |
+
bs, n, d = X.shape
|
159 |
+
X_all = torch.cat([X, E.reshape(bs, n, -1)], dim=-1)
|
160 |
+
prob_all = X_all @ Qtb.X
|
161 |
+
probX = prob_all[:, :, : self.Xdim_output]
|
162 |
+
probE = prob_all[:, :, self.Xdim_output :].reshape(bs, n, n, -1)
|
163 |
+
|
164 |
+
sampled_t = utils.sample_discrete_features(
|
165 |
+
probX=probX, probE=probE, node_mask=node_mask
|
166 |
+
)
|
167 |
+
|
168 |
+
X_t = F.one_hot(sampled_t.X, num_classes=self.Xdim_output)
|
169 |
+
E_t = F.one_hot(sampled_t.E, num_classes=self.Edim_output)
|
170 |
+
assert (X.shape == X_t.shape) and (E.shape == E_t.shape)
|
171 |
+
|
172 |
+
y_t = y
|
173 |
+
z_t = utils.PlaceHolder(X=X_t, E=E_t, y=y_t).type_as(X_t).mask(node_mask)
|
174 |
+
|
175 |
+
noisy_data = {
|
176 |
+
"t_int": t_int,
|
177 |
+
"t": t_float,
|
178 |
+
"beta_t": beta_t,
|
179 |
+
"alpha_s_bar": alpha_s_bar,
|
180 |
+
"alpha_t_bar": alpha_t_bar,
|
181 |
+
"X_t": z_t.X,
|
182 |
+
"E_t": z_t.E,
|
183 |
+
"y_t": z_t.y,
|
184 |
+
"node_mask": node_mask,
|
185 |
+
}
|
186 |
+
return noisy_data
|
187 |
+
|
188 |
+
@torch.no_grad()
|
189 |
+
def generate(
|
190 |
+
self,
|
191 |
+
properties,
|
192 |
+
device,
|
193 |
+
guide_scale=1.,
|
194 |
+
num_nodes=None,
|
195 |
+
number_chain_steps=50,
|
196 |
+
):
|
197 |
+
properties = [float('nan') if x is None else x for x in properties]
|
198 |
+
properties = torch.tensor(properties, dtype=torch.float).reshape(1, -1).to(device)
|
199 |
+
batch_size = properties.size(0)
|
200 |
+
assert batch_size == 1
|
201 |
+
if num_nodes is None:
|
202 |
+
num_nodes = self.node_dist.sample_n(batch_size, device)
|
203 |
+
else:
|
204 |
+
num_nodes = torch.LongTensor([num_nodes]).to(device)
|
205 |
+
|
206 |
+
arange = (
|
207 |
+
torch.arange(self.max_n_nodes, device=device)
|
208 |
+
.unsqueeze(0)
|
209 |
+
.expand(batch_size, -1)
|
210 |
+
)
|
211 |
+
node_mask = arange < num_nodes.unsqueeze(1)
|
212 |
+
|
213 |
+
z_T = utils.sample_discrete_feature_noise(
|
214 |
+
limit_dist=self.limit_dist, node_mask=node_mask
|
215 |
+
)
|
216 |
+
X, E = z_T.X, z_T.E
|
217 |
+
|
218 |
+
assert (E == torch.transpose(E, 1, 2)).all()
|
219 |
+
|
220 |
+
if number_chain_steps > 0:
|
221 |
+
chain_X_size = torch.Size((number_chain_steps, X.size(1)))
|
222 |
+
chain_E_size = torch.Size((number_chain_steps, E.size(1), E.size(2)))
|
223 |
+
chain_X = torch.zeros(chain_X_size)
|
224 |
+
chain_E = torch.zeros(chain_E_size)
|
225 |
+
|
226 |
+
# Iteratively sample p(z_s | z_t) for t = 1, ..., T, with s = t - 1.
|
227 |
+
y = properties
|
228 |
+
for s_int in reversed(range(0, self.T)):
|
229 |
+
s_array = s_int * torch.ones((batch_size, 1)).type_as(y)
|
230 |
+
t_array = s_array + 1
|
231 |
+
s_norm = s_array / self.T
|
232 |
+
t_norm = t_array / self.T
|
233 |
+
|
234 |
+
# Sample z_s
|
235 |
+
sampled_s, discrete_sampled_s = self.sample_p_zs_given_zt(
|
236 |
+
s_norm, t_norm, X, E, y, node_mask, guide_scale, device
|
237 |
+
)
|
238 |
+
X, E, y = sampled_s.X, sampled_s.E, sampled_s.y
|
239 |
+
|
240 |
+
if number_chain_steps > 0:
|
241 |
+
# Save the first keep_chain graphs
|
242 |
+
write_index = (s_int * number_chain_steps) // self.T
|
243 |
+
chain_X[write_index] = discrete_sampled_s.X[:1]
|
244 |
+
chain_E[write_index] = discrete_sampled_s.E[:1]
|
245 |
+
|
246 |
+
# Sample
|
247 |
+
sampled_s = sampled_s.mask(node_mask, collapse=True)
|
248 |
+
X, E, y = sampled_s.X, sampled_s.E, sampled_s.y
|
249 |
+
|
250 |
+
molecule_list = []
|
251 |
+
n = num_nodes[0]
|
252 |
+
atom_types = X[0, :n].cpu()
|
253 |
+
edge_types = E[0, :n, :n].cpu()
|
254 |
+
molecule_list.append([atom_types, edge_types])
|
255 |
+
smiles = graph_to_smiles(molecule_list, self.atom_decoder)[0]
|
256 |
+
|
257 |
+
# Visualize Chains
|
258 |
+
if number_chain_steps > 0:
|
259 |
+
final_X_chain = X[:1]
|
260 |
+
final_E_chain = E[:1]
|
261 |
+
|
262 |
+
chain_X[0] = final_X_chain # Overwrite last frame with the resulting X, E
|
263 |
+
chain_E[0] = final_E_chain
|
264 |
+
|
265 |
+
chain_X = utils.reverse_tensor(chain_X)
|
266 |
+
chain_E = utils.reverse_tensor(chain_E)
|
267 |
+
|
268 |
+
# Repeat last frame to see final sample better
|
269 |
+
chain_X = torch.cat([chain_X, chain_X[-1:].repeat(10, 1)], dim=0)
|
270 |
+
chain_E = torch.cat([chain_E, chain_E[-1:].repeat(10, 1, 1)], dim=0)
|
271 |
+
mol_img_list = self.mol_visualizer.visualize_chain(chain_X.numpy(), chain_E.numpy())
|
272 |
+
else:
|
273 |
+
mol_img_list = []
|
274 |
+
|
275 |
+
return smiles, mol_img_list
|
276 |
+
|
277 |
+
def check_valid(self, smiles):
|
278 |
+
return check_valid(smiles)
|
279 |
+
|
280 |
+
def sample_p_zs_given_zt(
|
281 |
+
self, s, t, X_t, E_t, properties, node_mask, guide_scale, device
|
282 |
+
):
|
283 |
+
"""Samples from zs ~ p(zs | zt). Only used during sampling.
|
284 |
+
if last_step, return the graph prediction as well"""
|
285 |
+
bs, n, _ = X_t.shape
|
286 |
+
beta_t = self.noise_schedule(t_normalized=t) # (bs, 1)
|
287 |
+
alpha_s_bar = self.noise_schedule.get_alpha_bar(t_normalized=s)
|
288 |
+
alpha_t_bar = self.noise_schedule.get_alpha_bar(t_normalized=t)
|
289 |
+
|
290 |
+
# Neural net predictions
|
291 |
+
noisy_data = {
|
292 |
+
"X_t": X_t,
|
293 |
+
"E_t": E_t,
|
294 |
+
"y_t": properties,
|
295 |
+
"t": t,
|
296 |
+
"node_mask": node_mask,
|
297 |
+
}
|
298 |
+
|
299 |
+
def get_prob(noisy_data, unconditioned=False):
|
300 |
+
pred = self._forward(noisy_data, unconditioned=unconditioned)
|
301 |
+
|
302 |
+
# Normalize predictions
|
303 |
+
pred_X = F.softmax(pred.X, dim=-1) # bs, n, d0
|
304 |
+
pred_E = F.softmax(pred.E, dim=-1) # bs, n, n, d0
|
305 |
+
|
306 |
+
# Retrieve transitions matrix
|
307 |
+
Qtb = self.transition_model.get_Qt_bar(alpha_t_bar, device)
|
308 |
+
Qsb = self.transition_model.get_Qt_bar(alpha_s_bar, device)
|
309 |
+
Qt = self.transition_model.get_Qt(beta_t, device)
|
310 |
+
|
311 |
+
Xt_all = torch.cat([X_t, E_t.reshape(bs, n, -1)], dim=-1)
|
312 |
+
predX_all = torch.cat([pred_X, pred_E.reshape(bs, n, -1)], dim=-1)
|
313 |
+
|
314 |
+
unnormalized_probX_all = utils.reverse_diffusion(
|
315 |
+
predX_0=predX_all, X_t=Xt_all, Qt=Qt.X, Qsb=Qsb.X, Qtb=Qtb.X
|
316 |
+
)
|
317 |
+
|
318 |
+
unnormalized_prob_X = unnormalized_probX_all[:, :, : self.Xdim_output]
|
319 |
+
unnormalized_prob_E = unnormalized_probX_all[
|
320 |
+
:, :, self.Xdim_output :
|
321 |
+
].reshape(bs, n * n, -1)
|
322 |
+
|
323 |
+
unnormalized_prob_X[torch.sum(unnormalized_prob_X, dim=-1) == 0] = 1e-5
|
324 |
+
unnormalized_prob_E[torch.sum(unnormalized_prob_E, dim=-1) == 0] = 1e-5
|
325 |
+
|
326 |
+
prob_X = unnormalized_prob_X / torch.sum(
|
327 |
+
unnormalized_prob_X, dim=-1, keepdim=True
|
328 |
+
) # bs, n, d_t-1
|
329 |
+
prob_E = unnormalized_prob_E / torch.sum(
|
330 |
+
unnormalized_prob_E, dim=-1, keepdim=True
|
331 |
+
) # bs, n, d_t-1
|
332 |
+
prob_E = prob_E.reshape(bs, n, n, pred_E.shape[-1])
|
333 |
+
|
334 |
+
return prob_X, prob_E
|
335 |
+
|
336 |
+
prob_X, prob_E = get_prob(noisy_data)
|
337 |
+
|
338 |
+
### Guidance
|
339 |
+
if guide_scale != 1:
|
340 |
+
uncon_prob_X, uncon_prob_E = get_prob(
|
341 |
+
noisy_data, unconditioned=True
|
342 |
+
)
|
343 |
+
prob_X = (
|
344 |
+
uncon_prob_X
|
345 |
+
* (prob_X / uncon_prob_X.clamp_min(1e-5)) ** guide_scale
|
346 |
+
)
|
347 |
+
prob_E = (
|
348 |
+
uncon_prob_E
|
349 |
+
* (prob_E / uncon_prob_E.clamp_min(1e-5)) ** guide_scale
|
350 |
+
)
|
351 |
+
prob_X = prob_X / prob_X.sum(dim=-1, keepdim=True).clamp_min(1e-5)
|
352 |
+
prob_E = prob_E / prob_E.sum(dim=-1, keepdim=True).clamp_min(1e-5)
|
353 |
+
|
354 |
+
# assert ((prob_X.sum(dim=-1) - 1).abs() < 1e-3).all()
|
355 |
+
# assert ((prob_E.sum(dim=-1) - 1).abs() < 1e-3).all()
|
356 |
+
|
357 |
+
sampled_s = utils.sample_discrete_features(
|
358 |
+
prob_X, prob_E, node_mask=node_mask, step=s[0, 0].item()
|
359 |
+
)
|
360 |
+
|
361 |
+
X_s = F.one_hot(sampled_s.X, num_classes=self.Xdim_output).to(self.model_dtype)
|
362 |
+
E_s = F.one_hot(sampled_s.E, num_classes=self.Edim_output).to(self.model_dtype)
|
363 |
+
|
364 |
+
assert (E_s == torch.transpose(E_s, 1, 2)).all()
|
365 |
+
assert (X_t.shape == X_s.shape) and (E_t.shape == E_s.shape)
|
366 |
+
|
367 |
+
out_one_hot = utils.PlaceHolder(X=X_s, E=E_s, y=properties)
|
368 |
+
out_discrete = utils.PlaceHolder(X=X_s, E=E_s, y=properties)
|
369 |
+
|
370 |
+
return out_one_hot.mask(node_mask).type_as(properties), out_discrete.mask(
|
371 |
+
node_mask, collapse=True
|
372 |
+
).type_as(properties)
|
373 |
+
|
374 |
+
|
375 |
+
#####
|
376 |
+
# from graph_decoder.diffusion_model import GraphDiT
|
377 |
def load_graph_decoder(path='model_labeled'):
|
378 |
model = GraphDiT(
|
379 |
model_config_path=f"{path}/config.yaml",
|