import torch import torch.nn as nn import math import torch.nn.functional as F class TimestepEmbedder(nn.Module): """ Embeds scalar timesteps into vector representations. """ def __init__(self, hidden_size, frequency_embedding_size=256): super().__init__() self.mlp = nn.Sequential( nn.Linear(frequency_embedding_size, hidden_size, bias=True), nn.SiLU(), nn.Linear(hidden_size, hidden_size, bias=True), ) self.frequency_embedding_size = frequency_embedding_size @staticmethod def timestep_embedding(t, dim, max_period=10000): """ Create sinusoidal timestep embeddings. :param t: a 1-D Tensor of N indices, one per batch element. These may be fractional. :param dim: the dimension of the output. :param max_period: controls the minimum frequency of the embeddings. :return: an (N, D) Tensor of positional embeddings. """ # https://github.com/openai/glide-text2im/blob/main/glide_text2im/nn.py half = dim // 2 freqs = torch.exp( -math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half ).to(device=t.device) args = t[:, None].float() * freqs[None] embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1) if dim % 2: embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1) return embedding def forward(self, t): t = t.view(-1) t_freq = self.timestep_embedding(t, self.frequency_embedding_size) t_emb = self.mlp(t_freq) return t_emb class ConditionEmbedder(nn.Module): def __init__(self, input_size, hidden_size, dropout_prob, max_weight=1.0, sigma_factor=0.25): super().__init__() self.embedding_drop = nn.Embedding(input_size, hidden_size) self.mlps = nn.ModuleList([ nn.Sequential( nn.Linear(1, hidden_size, bias=True), nn.Softmax(dim=1), nn.Linear(hidden_size, hidden_size, bias=False) ) for _ in range(input_size) ]) self.hidden_size = hidden_size self.dropout_prob = dropout_prob def forward(self, labels, train, unconditioned): embeddings = 0 for dim in range(labels.shape[1]): label = labels[:, dim] if unconditioned: drop_ids = torch.ones_like(label).bool() else: drop_ids = torch.isnan(label) if train: random_tensor = torch.rand(label.shape).type_as(labels) probability_mask = random_tensor < self.dropout_prob drop_ids = drop_ids | probability_mask label = label.unsqueeze(1) embedding = torch.zeros((label.shape[0], self.hidden_size)).type_as(labels) mlp_out = self.mlps[dim](label[~drop_ids]) embedding[~drop_ids] = mlp_out.type_as(embedding) embedding[drop_ids] += self.embedding_drop.weight[dim] embeddings += embedding return embeddings